

Introduction

Welcome! You have just opened the first edition of the EvoluteTools scripting Primer.
The introduction of parametric modeling and scripting to architecture is comparable to the discovery
of perspective in the Renaissance according to Patrik Schumacher1. Indeed, learning to script changes
the way you look at problems and how you solve them. The aim of this primer is to introduce you to
the new possibilities within the Evolute Tools scripting interface and to show you how to take
advantage of them. Scripting with the EvoluteTools scripting interface in RhinoScript opens new
possibilities for the designer to edit, optimize and manufacture meshes/building envelopes. While
EvoluteTools’ obvious application field is the building skin, this work will hopefully inspire research of
this software’s applicability in other fields such as boat building or product design.
The primer features twenty example scripts which are explained in detail in their respective chapters.
You can download the scripts and some example files together with this primer. We will go through
the scripts step by step and explain all techniques that are used. Don’t worry if you don’t understand
something at first, some things might just take a while to sink in, but after a while everything will feel
natural.

I’d like to thank Alexander Schiftner, Florin Isvoranu, Mathias Höbinger and Michael Eigensatz for their
help and patience during the last few months. This primer would not have been possible without
them.

I hope this tutorial will teach you everything you need to know to successfully use the EvoluteTools
scripting interface and that the learning process will not be too painful.

Good luck!

Marko Tomičić

1 Patrik Schumacher, The Autopoiesis of Architecture, John Wiley & Sons Ltd., 2011, p 148.

Table of Contents
1. Warm Up ... 1

1.1 About EvoluteTools for Rhino ... 1

1.2 Overview .. 2

1.3 Before we start… ... 3

1.4 Getting started .. 3

1.4.1 Installation .. 3

1.4.2 Monkey ... 4

1.5 Run your first script ... 5

2. The Halfedge Data Structure ... 6

2.1 Rhino’s mesh storage .. 6

2.2 Halfedges ... 7

2.3 Interconnections .. 8

2.4 Navigating the Halfedge Data Structure ... 9

2.5 Accessing the Halfedge Data Structure with EvoluteTools ... 10

2.5.1 EvoluteTools Handles ... 10

2.5.2 EvoluteTools Functions ... 11

2.6 Examples .. 13

2.6.1 Delete Edge’s Faces .. 13

2.6.2 Get Face’s Vertices .. 15

2.6.3 Vertex Faces .. 18

2.6.4 Select Polyline ... 20

2.6.5 Vertex Ring .. 23

2.6.6 Vertex nRing .. 25

3. Mesh Editing .. 29

3.1 About this chapter ... 29

3.2 Divide et Impera .. 30

3.3 Examples .. 30

3.3.1 Edge Length Analysis .. 31

3.3.2 Edge Length Subdivision ... 33

3.3.3 Max Edge Length Loop Cutting ... 35

3.3.4 Min Edge Length Delete Polylines .. 37

3.3.5 Triangles to quads ... 40

4. Mesh Optimization .. 42

4.1 Optimization .. 42

4.2 Optimization options ... 42

4.3 Constraints ... 43

4.4 Examples .. 44

4.4.1 Face Attractor ... 44

4.4.2 Closest Polyline Vertices Function .. 47

4.4.3 Snap Mesh to Curves .. 51

4.4.4 Closest Non Polyline Vertices function ... 53

4.4.5 Is Mesh Diagonalized function .. 56

4.4.6 Snap Vertices to Planes... 57

4.4.7 Tower from Coplanarity Constraints .. 59

5. Post Processing.. 65

5.1 About this chapter ... 65

5.2 Examples .. 66

5.2.1 Pipe Substructure ... 66

5.2.2 The Ultimate Panel Layout for Production Script ... 69

5.2.3 FaceRotation ... 77

1. Warm Up

1.1 About EvoluteTools for Rhino
EvoluteTools for Rhino is a very powerful Rhino plugin which allows you to design beautiful and
buildable panel layouts for any reference geometry you choose. It provides one of the most powerful
paneling and planarization tools for freeform structures on the market. Basically, EvoluteTools works
with a reference surface (NURBS surface, mesh etc.) and a coarse mesh which you will have to provide.
The coarse mesh is subdivided and optimized according to specified constraints to match the
reference surface as close as possible while maintaining a visually pleasing panel layout. It allows the
user to specify any amount of constraints, optimize the mesh, add or remove constraints, change their
importance and optimize again.

EvoluteTools for Rhino is available as a LITE (free) version and as a PRO version.

This Primer is targeted at the EvoluteTools Pro users for two reasons. One is that we will explore
EvoluteTools’ hidden functionality which is accessed via the EvoluteTools scripting interface and is
probably something beginners will not engage into willingly. However, this Primer will show you how to
take your workflow with EvoluteTools to the next level, especially when it comes to handling a huge
amount of constraints and speeding up your work. The second reason is simply that the EvoluteTools
Scripting interface is only supported by the Pro version of EvoluteTools for Rhino.

1

1.2 Overview

This Primer is divided into five parts. The first part is an introduction which will show you how to get
started. In the second part you will learn about the halfedge data structure which is used in
EvoluteTools. This is the way EvoluteTools stores and accesses meshes. Mastering the halfedge data
structure will enable you to take advantage of the EvoluteTools mesh navigation functions which help
you to perform targeted operations on the mesh. These first two parts are the inevitable theoretical
parts of the Primer.

After learning about the halfedge data structure we go on to the three main workflow steps in
EvoluteTools (Subdivision, Optimization and Post processing).

 1. Create the reference
surface

 2. Create the coarse mesh
 3. Subdivision
 4. Optimization
 5. Post processing

In the third part of the Primer “Mesh Editing” we will explore how a mesh is subdivided and try to
automate and customize this process. The fourth part “Mesh Optimization” showcases example
scripts which automate the optimization process with a focus on scripting the thousands of possible
constraints2 prior to optimization. The last part explores some possibilities of “Post processing”. We
will use the EvoluteTools scripting interface to take the building envelope from concept (digital mesh)
to manufacturing.

After completing this Primer you should be able to control and automate both the mesh subdivision
and the optimization process. Further, you should be able to build substructures for your mesh and to
lay out the panels for production.

2 See chapter 4.3 Constraints

2

1.3 Before we start…
… there are some things that you should familiarize yourself with.

Since EvoluteTools works as a plugin within Rhinoceros it wouldn’t hurt to be acquainted with the
basic functionality of Rhino. I assume that you are an experienced Rhino user since you’re reading this
Primer, but in case you are really new to Rhino you should probably take a look at some online
tutorials first.

Please take a look at the video tutorials on Evolute’s website because that’s from where we are going
to carry on in this Primer.

 http://evolute.at/software/evolutetools-for-rhino/learning-center.html

We will be working exclusively on meshes so the theoretical knowledge about meshes will be of great
help as well.3

Further, we will use the EvoluteTools Scripting interface and RhinoScript to unleash the enormous
hidden powers of EvoluteTools, so it is necessary to have a basic knowledge of RhinoScript,
algorithms, conditional statements, flow control, loops, arrays etc.

If you need to refresh your memory about the previously mentioned topics I heartily recommend
David Rutten’s RhinoScript 101 Primer which can be downloaded from the Rhino website.

Please take a look at the EvoluteTools Help file as well, especially the part where the EvoluteTools
Handles and the Garbage Collections are explained (page 67 – 73).

It is useful to have the EvoluteTools Help and the RhinoScript Help running in the background while
you are working on a script.

1.4 Getting started

1.4.1 Installation
You can install EvoluteTools for Rhino by either dragging and dropping the EvoluteToolsForRhino.rhp
file into the Rhino viewport or you could also install it via the Rhino Plugin Manager (command
“_PluginManager” or Tools > Options > Plug-ins). You can install the EvoluteTools Pro for Rhino
Toolbar by dragging and dropping as well.

Upon first use EvoluteTools will ask you to enter the serial number which you should have received
during the purchasing process. If a file named serial.txt exists in the same directory as the plugin, its
content will be filled automatically into the serial number dialog. You may use the “etLicenseManager”
command in Rhino to manage your license(s) later.

If you receive the following error message while loading the Plugin “Unable to load
EvoluteToolsForRhino.rhp plug-in: could not open the plugin file” – then you need to install a missing
Microsoft Update: http://www.microsoft.com/download/en/details.aspx?id=26347

3 See chapter 2 – The Halfedge Data Structure

3

http://evolute.at/software/evolutetools-for-rhino/learning-center.html
http://www.microsoft.com/download/en/details.aspx?id=26347

1.4.2 Monkey
You will spend a lot of time writing scripts in your work so it makes sense to install the Monkey
RhinoScript editor if you work with Rhino 4. EvoluteTools supports code auto completion which will
make your life a lot easier. To enable the code auto completion you need first to install Monkey
RhinoScript Editor (download from Rhino website) and then to copy the
EvoluteToolsForRhino.syntaxml from your EvoluteTools folder to the subfolder Plug-
ins/Monkey/Resources of your Rhino installation.

If you work with Rhino 5 you don’t have to download the Monkey RhinoScript editor since it is
integrated in Rhino 5 as “EditScript”. You can install the code auto completion by running
InstallRhinoScriptSyntaxDescription.bat from your EvoluteTools folder. This will copy the
EvoluteToolsForRhino.syntaxml file to the correct location in Rhino4 and Rhino5.

If you experience any other trouble during the installation of the software please refer to the
EvoluteTools Help file or contact the Evolute team at support@evolute.at

4

mailto:support@evolute.at

1.5 Run your first script
This is a small preview of what we will be doing in this Primer. It should show you where to find the
example scripts and how to run them. Together with this Primer you can download the example files.
Please navigate to the folder with the current chapter’s number (01 Introduction) and open the Rhino
file with the same number as the current subchapter (1_2_YourFirstExample). If there is no example
file with some of the scripts this means that they should work on any mesh. Type _Monkey or
_EditScript in Rhino’s command line to access your script editor. In the script editor open the script
with the name of this chapter (1_2_YourFirstScript). Run the Script.

The script will ask you to select your mesh and to specify a rotation angle. All mesh faces will be
rotated around their diagonal. This is of course no valid mesh anymore. You will end up with a lot of
individual surface objects representing the object’s panels.

The following might come in handy in other scripts as well:
On line 23 of the script there is a function which has been commented out:

'Call Rhino.EnableRedraw(False)

The apostrophe in the beginning of the line tells the script editor that this is a comment and thus
should be skipped when the script is executed. Right now, since the function is not active, all changes
that happen during the execution of the script will be shown in the Rhino viewport. This is nice if you
want to see what happens while your script runs. Later you can disable the Rhino viewport redraw by
deleting the apostrophe in the beginning of this line of code.

Call Rhino.EnableRedraw (False)
This will make the script complete a lot faster. Don’t forget to enable the viewport redrawing again
after your script finishes like it is done on line 44:

Call Rhino.EnableRedraw (True)

I’m sure it is fun to execute scripts that are working well already. In order for you to be able to write
your own, we need to start with some theory first…

5

2. The Halfedge Data Structure

2.1 Rhino’s mesh storage
In order to be able to use the EvoluteTools scripting interface it is very important to understand the
halfedge data structure. There is no way around this since everything you do with the EvoluteTools
scripting interface will be based on the halfedge data structure. I guess you are familiar with the basic
concepts of how meshes work since you are reading this, but it is important to know the difference
between the way Rhino stores meshes and the way EvoluteTools does it (Halfedge Data Structure!).
Now, in Rhino the mesh is stored in two lists. The vertices with their coordinates and a unique index
for every vertex are stored in the first list. The second list contains the face identifiers and the
identifiers of their respective vertices. For the mesh in the image below we would have an array
containing sixteen vertices with their x, y and z coordinates, and another array of nine faces where
every face would store the indices of its four vertices.

This is an efficient way to store a mesh; however, it is not the optimal method if you need to have full
navigational control over the mesh.

Let’s say we want to select one vertex and then do something with all its incidental faces. For this task
we would have to scan the second list where the vertex combinations are stored and search for all the
faces which have stored the vertex we selected. This can be a really time consuming task, especially
when you start working on complex meshes with thousands of faces. The halfedge data structure
enables us to have full control over the mesh and to perform such operations in a more effective way.

6

2.2 Halfedges
The halfedge data structure is an edge-based structure in which each edge
is split up into two contrarily directed edges (see image on the right). We
will use those halfedges to navigate the mesh or parts of it, independent of
the position of the vertices in space. Each halfedge has one start and one
end vertex. The end vertex of one halfedge is the start vertex of its next
halfedge and of its opposite halfedge.

Let’s assume we somehow selected the starting halfedge shown in red (you will never actually select
it because it is not a physical object in Rhino but rather a concept). When we got hold of the starting
halfedge we automatically know which edge it belongs to (the edge between vertices 9 and 10),
which opposite halfedge it belongs to, we know the start and end vertex (9 and 10 respectively in this
case) and we know which face it belongs to (face E). This is information that is stored in the halfedge
and as you will learn it is easy to extract this data.

 Each edge points to two opposing halfedges, even if it is a boundary edge. Those are two opposite
halfedges. Notice how the halfedges of one face form a loop. This is because every halfedge has a
predecessor (previous halfedge) and a successor (next halfedge). All halfedges are part of some loop
which either encloses a mesh face (like on the image above) or loops around a hole. Those latter loops
are called mesh boundaries, and the halfedges within this loop are called boundary halfedges. These
halfedges are special in that they do not point to a valid face. It might be useful to know that the
looping of the halfedges usually follows the right hand convention, i.e. loops rotate around the
direction of mesh normals according to the right hand rule.

7

2.3 Interconnections
The navigation in the halfedge data structure is based on the interconnection of the mesh elements
and the referencing between them. Every element stores information about another one and vice
versa.

Each halfedge stores its start and end vertex, its previous and next halfedge, its edge, its opposite
halfedge, and the face it bounds

.

You recognize from the above, that the major part of information about the mesh connectivity is stored
with the halfedges. In most cases we will use the vertex handle or the face handle just to get hold of a
halfedge in order to complete a task. The important thing for us is, as you may have noticed, that
there is a link from vertices, faces and edges to the halfedges and back.

Each vertex references to one of the halfedges
emanating from it, i.e. one of the halfedges
starting at this vertex. There is no specific rule
defining which of the outgoing halfedges is
referenced. We will see later on that this
information suffices to determine all the mesh
elements adjacent to the vertex.

Each face stores a reference to one of its
bounding halfedges. Again, this is sufficient
information to determine all the mesh elements
adjacent to the face, and there is no specific rule
defining which of the bounding halfedges is
referenced.

8

2.4 Navigating the Halfedge Data Structure
Since you now know the theory behind the halfedge data structure it’s time to teach you how to use it
properly. The task is to find your way from point A to point B by moving from halfedge to halfedge.
Take a look at the image below and try to sketch the shortest way from vertex v1 to vertex v2 using
the halfedges to move along.

This is what we need to do: We need to
move along the halfedges until we hit
the halfedge which has stored the
vertex v2 either as its start point or as
its end point. We start at the halfedge 0
and move to its successor (1). From
there we change to the opposite
halfedge (2) and move two times to the
next halfedge (3 and 4). We switch
again to the opposite halfedge (5) and
once more we move on to the next
halfedge (6). Now that we are at the
halfedge which has the vertex v2 (7) in
this case as its end point it is easy for us
to extract it.

9

2.5 Accessing the Halfedge Data Structure with EvoluteTools
The first thing that we need to do in order to get access to the halfedge data structure is to load the
EvoluteTools scripting interface object in RhinoScript. For this we need to define a variable (et) and
call the Rhino.GetPluginObject function. Those two lines are mandatory in the beginning of every
script in which you want to use the EvoluteTools functions.

Dim et
Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")

The EvoluteTools object has a lot of functions which will be used throughout the entire Primer. They
will be discussed later as we stumble upon them. You can find detailed information about all
EvoluteTools functions in the help file. The EvoluteTools functions use handles to modify the mesh.
We will first take a look at the handles and then at some basic ET functions.

2.5.1 EvoluteTools Handles
Vertices, edges, half-edges and faces of a mesh are each numbered and indentified by their indices
starting at 0. The number of, e.g. vertices of a mesh can easily be found out using the command
EmNumberOfVertices. To avoid ambiguous function calls and confusion of mesh elements of
different type, the standard format for mesh elements when working with the EvoluteTools Scripting
Interface is that of a string consisting of a lower case letter designating the type of the element
followed by the respective index.

The prefix letters are:

Element Prefix Example
vertex v v143

halfedge h h0
edge e e9
face f f9342

Those strings are vertex handles, halfedge handles…

These handles cannot be properly used without identifying the Rhino mesh object which the
described element is a part of. An array of strings consisting of one unique mesh ID and one
EvoluteTools Handle is called Unique EvoluteTools Handle. If the type needs to be specified, the
terms Unique Vertex Handle etc. are used, respectively. Such an array needs to have exactly two
elements. The first element (0) is always the mesh ID and the second element (1) is the EvoluteTools
handle.

10

mk:@MSITStore:C:\Program%20Files%20(x86)\Rhinoceros%204.0\EvoluteToolsAcademic%202_1_0\EvoluteToolsForRhino.chm::/Scripting/EmNumberOfVertices.htm

2.5.2 EvoluteTools Functions
In chapter 2.3 Interconnections we discussed how the mesh connectivity is stored by means of
references between the mesh elements. This chapter will show you the most important functions for
mesh navigation. Please refer to the help file for a detailed explanation of all EvoluteTools functions.
You will remember the images below from chapter 2.3.

The incidental halfedge of a vertex is
found with the et.EmHalfedge
function. For reasons of convenience,
the face bounded by this halfedge
can be found using et.EmFace.

Although the face stores only one
halfedge which can be retrieved by
et.EmHalfedge, there are functions in
EvoluteTools to extract all of them at
once. The face’s halfedges are
accessed with the
et.EmGetFaceHalfedges function

A face’s vertices are accessed with the
et.EmGetFaceVertices function.

The et.EmGetFaceHalfedges function
and the et.EmGetFaceVertices function
return arrays ordered according to
the halfedge loop.

11

As mentioned above, the halfedge stores the majority of connectivity information. We can use it to
access all other elements in the mesh. The following image shows some functions to do that.

The following examples will teach you to use this and other ET functions for mesh navigation and to
access any part of the mesh that you want.

.

12

2.6 Examples
On the following pages there will be six example scripts which will help you to understand the
navigation techniques used in the EvoluteTools scripting interface. We will start with a short and
simple script and work or way up to a little bit more complicated examples.

2.6.1 Delete Edge’s Faces
The first script asks you to select an edge, finds the adjacent faces and deletes them. It does so by
finding first one halfedge of the selected edge. It then remembers the adjacent face of that edge by
storing it into an array. The script advances to the opposite halfedge and finds its adjacent face. Finally
the two faces are deleted.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call EdgeDeleteAdjacentFaces ()
6 ' This script will ask the user to select an edge, it then finds
7 ' the adjacent faces of that edge and deletes them
8 Sub EdgeDeleteAdjacentFaces ()
9 ' Declaration of variables
10 Dim et, edge, halfedge, face
11
12 ' Get EvoluteTools plugin object
13 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
14 If IsNull(et) Then Exit Sub
15
16 ' Get an edge, and one of the corresponding halfedges
17 edge = et.PickEdge(1, 1, "Select an edge")
18 If IsNull(edge) Then Exit Sub
19 halfedge = et.EmHalfedge (edge)
20
21 ' Find adjacent faces and delete them
22 face = et.EmFace(halfedge)
23 et.EmDeleteFace (face)
24 face = et.EmFace(et.EmOppositeHalfedge (halfedge))
25 et.EmDeleteFace (face)
26 End Sub

1. Select edge 2. Find halfedge

3. Store adjacent face

4. Go to opposite halfedge

5. Store adjacent face

6. Delete

13

We declare our variables on line 10. After that we have to load the EvoluteTools scripting interface
object in each and every script when we want to use EvoluteTools. This is done as shown on line 13.
With the et.PickEdge function we ask the user to select an edge by clicking it in the viewport (line 17).
Now we need to find the two adjacent faces of the selected edge. For this we will use the halfedge
data structure, therefore the halfedge of the selected edge is extracted on line 19. The first face is
found with the et.EmFace function on line 22 and deleted on the following line. For the second face
we will redefine the face variable. This time we will extract the face belonging to the opposite
halfedge of the halfedge that we found on line 19. The second face is deleted on line 25. If a boundary
edge is selected there will only be one face to delete. The empty face belonging to one of the two
halfedges of the selected boundary edge will be skipped.

14

2.6.2 Get Face’s Vertices
Now you know how to get a halfedge from another handle e.g. an edge, and how to find another
handle which is stored in that halfedge (in the previous example it was the faces belonging to the
selected edge).

 You also saw an example of how to get from one halfedge to its opposite halfedge (Line 21). In the
next example there is a script which asks the user to select a mesh face and returns that face’s vertices.
We will use the et.EmNextHalfedge function to navigate our way around the border of the face while
selecting the end vertex of every new halfedge we visit.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call FaceVerticesUi ()
6 ' This script works with triangular and quadrilateral meshes
7 ' This script will return an array of vertex handles for a given face
handle.

8 ' This function should be used for demonstration purposes only, et.
EmGetFaceVertices is

9 ' a convenience function which provides exactly its functionality.
10 Function FaceVertices (ByVal face)
11 FaceVertices = Null
12
13 ' Declaration of variables
14 Dim et, halfedge, startedge, i
15
16 ' Get EvoluteTools plugin object
17 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
18 If IsNull(et) Then Exit Function
19
20 ' Get halfedge, remember starting edge
21 arrHalfedge = et.EmHalfedge (face)
22 arrStartEdge = et.EmEdge(arrHalfedge)
23
24 ' The arrVertices array is defined according to the face's valence
25 ReDim arrVertices (et.EmFaceValence (face) - 1)
26
27 ' Loop through all halfedges bounding the selected face
28 ' and add their end vertices to the array
29 i = 0
30 Do

1. Get face
2. Get its halfedge
3. Find end vertex of the halfedge

4. Go to next halfedge
5. Find end vertex of the halfedge
6. Repeat this until you hit the first halfedge again

15

31 arrVertices (i) = et.EmEndVertex (arrHalfedge)
32 '' Advance
33 arrHalfedge = et.EmNextHalfedge (arrHalfedge)
34 '' Loop until we hit the starting edge
35 i = i+1
36 Loop While et.emEdge(arrHalfedge)(1) <> arrStartEdge(1)
37
38 FaceVertices = arrVertices
39 End Function
40
41 'This function serves as a user interface for demonstrating VertexFaces.
42 Sub FaceVerticesUi
43 ' Declaration of variables
44 Dim et, face, arrVertices
45
46 ' Get EvoluteTools plugin object
47 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
48 If IsNull(et) Then Exit Sub
49
50 ' Ask user to select a face
51 face = et.PickFace(1, 1)
52 If IsNull(face) Then Exit Sub
53
54 ' Determine the adjacent vertices
55 arrVertices = FaceVertices (face)
56 If IsNull(arrVertices) Then
57 Rhino.Print "FaceVertices failed."
58 Else
59 Rhino.Print "Face " & face(1) & " is adjacent to " & UBound(

arrVertices) + 1 & " vertices."
60 End If
61
62 End Sub

After declaring some variables and loading the EvoluteTools scripting interface object we ask the user
to select one face from a mesh (line 51). The next thing that we need to do in the main subroutine is
to call the function FaceVertices which will return an array containing the selected face’s adjacent
vertices (line 55). The function starts again by defining its own variables and calling once more the
EvoluteTools plugin object (line 14-18). After that we find one halfedge which belongs to the selected
face (line 21). The edge belonging to this halfedge is marked arrStartEdge(line 22). This is because we
will move in a loop from one halfedge to the next. We want to know when we arrive at the same edge
where we started our journey because then we will have visited all the face’s halfedges. We will start a
loop from our starting halfedge in which we will move to the next halfedge in every iteration and add
the end vertex of the current halfedge to an array. Before entering the loop we need to define the
arrVertices variable as an array with one empty space for each vertex (line 25).

In each new iteration of the loop we will fill the current free space indicated by the variable “i” in the
array with the end vertex of the current halfedge (line 31). Before the loop finishes we need to prepare
our arrHalfedge variable for the next round. The variable needs to store the next halfedge in the circle
of face halfedges that we are moving along (line 33). The loop will repeat until a full circle through all
halfedges belonging to the face is completed. The loop ends when the arrHalfedge’s edge becomes
the same as our arrStartEdge (line 36).

You will have noticed that there is a number one in parenthesis next to our two edges on line 36:

Loop While et.emEdge(arrHalfedge)(1) <> arrStartEdge(1)

This is because edges are stored as arrays which consist of two elements. The first is the ID of the mesh
this element belongs to and the second is the edge handle. Since both elements that we want to

16

compare belong to the same mesh the mesh ID is obviously the same for both. If we would use (0)
instead of (1) the loop would end after the first repetition.

In the image above you can see that arrStartEdge (1) stores the edge handle. This information can be
compared to other edge handles in order to know when we hit the edge where we started from.

17

2.6.3 Vertex Faces
In the first script we used the et.EmOppositeHalfedge function to find the opposite halfedge of the
halfedge we already had a grip on. In the second script we used the et.EmNextHalfedge function to
move along the border of a face from one halfedge to the other. In the next example we will combine
them to move first to the opposite and then to the next halfedge. The goal is to ask the user to select
one vertex and find all the incident faces of that vertex.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call VertexFacesUi ()
6 ' This script finds the adjacent faces of a given vertex
7 ' and returns them in an array.
8 Function VertexFaces (ByVal vertex)
9 VertexFaces = Null

10
11 ' Declaration of variables
12 Dim et, halfedge, face, i, intVertexValence
13 ReDim arrFaces(-1)
14
15 ' Get EvoluteTools plugin object
16 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
17 If IsNull(et) Then Exit Function
18
19 ' Get the vertices' halfedge, and its valence
20 halfedge = et.EmHalfedge (vertex)
21 intVertexValence = et.EmVertexValence (vertex)
22
23 ' Loop through all outgoing halfedges of the vertex,
24 ' add their adjacent face (if any) to the array.
25 For i=0 To intVertexValence - 1
26 face = et.EmFace(halfedge)
27 If Not et.EmIsBoundary (halfedge) Then
28 ReDim Preserve arrFaces(UBound(arrFaces) + 1)
29 arrFaces(UBound(arrFaces)) = face

1. Get vertex
2. Get halfedge
3. Get face
4. Go to opposite halfedge
5. Go to next halfedge
6. Store halfedges face
7. Repeat this until you hit the first halfedge again

18

30 End If
31 ' Proceed to next halfedge
32 halfedge = et.EmNextHalfedge (et.EmOppositeHalfedge (halfedge))
33 Next
34 VertexFaces = arrFaces
35 End Function
36
37 ' This function serves as a user interface for demonstrating VertexFaces.
38 Sub VertexFacesUi
39 ' Declaration of variables
40 Dim et, vertex, arrFaces
41
42 ' Get EvoluteTools plugin object
43 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
44 If IsNull(et) Then Exit Sub
45
46 ' Ask user to select a vertex
47 vertex = et.PickVertex (1, 1)
48 If IsNull(vertex) Then Exit Sub
49
50 ' Determine the number of adjacent faces
51 arrFaces = VertexFaces (vertex)
52 If IsNull(arrFaces) Then
53 Rhino.Print "VertexFaces failed."
54 Else
55 Rhino.Print "Vertex " & vertex(1) & " is adjacent to " & UBound(arrFaces) + 1 & "

faces."
56 End If
57 End Sub

We will use a function which will always return the adjacent faces to an input vertex. The vertex is
provided by the part of the script between lines 38 and 57. After declaring the variables and calling
the EvoluteTools plugin object (line 44-44) the user is asked to pick a vertex from the scene (line 47).
On line 51 we call the VertexFaces function (line 8-35), which will return the adjacent faces of the
selected vertex. When starting a function we have to declare the function’s own variables and set the
EvoluteTools plugin object again (line 12–17). Note, inside this function the vertex variable holds the
vertex provided by the user on line 47. The function now finds the vertices’ halfedge and its valence,
which is equal to the number of adjacent faces (line 20-21). The function enters a loop through the
adjacent faces. The face belonging to the current halfedge is extracted and stored in the face variable.
If the current halfedge is not a boundary halfedge, which would mean that there is no face associated
with it, then the arrFaces array is redefined and one free space is added on its end (line 25-28). The
current face is stored in the newly created spot of the arrFaces array (line 29). The function proceeds to
the next halfedge. It starts at the current halfedge and moves first to the opposite halfedge and from
there to the next halfedge (line 32)3. The function’s output is defined on line 34. It means that the
output of the function VertexFaces is the array arrFaces, so the function returns the adjacent faces of a
vertex. When the function is finished the main subroutine continues where it left off before. Now the
variable arrFaces on line 51 holds the faces which were computed in the function. We could now take
those faces and manipulate them however we want but for this example we will print our result to the
command line and leave it at that.

3 See image above

19

2.6.4 Select Polyline
The three previous examples are the most basic examples for navigating the halfedge data structure.
It is time to move on and try something a bit more complicated. The following script asks the user to
select a polyline of the mesh. The selected polyline is redrawn as a curve object in the Rhino viewport.
The image below explains what needs to be done.
This script is designed to work with quadrilateral meshes.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call SelectPolyline()
6 ' This script finds the polyline which belongs to a selected edge and draws it as a
7 ' curve object in the Rhino viewport. This script works only with quadrilateral meshes.
8 ' This script works with quadrilateral meshes
9 Sub SelectPolyline()
10 Dim et, arrStartEdge , currentHalfedge , nextHalfedge , blnLast
11 Set et= Rhino.GetPlugInObject("EvoluteTools for Rhino")
12
13 ' Get the starting edge and its halfedge
14 arrStartEdge = et.PickEdge(1, 1, "Select the polyline")
15 nextHalfedge = et.EmHalfedge(arrStartEdge)
16

1. Get Edge
2. Get halfedge
3. Move to the end of the polyline

4. Turn around
5. Move to the opposite end and create line
objects from start vertex to end vertex of every
visited halfedge.
6. Join lines

20

17 ' Move to the very end of the polyline
18 Do
19 '' Advance
20 currentHalfedge = nextHalfedge
21 '' Compute next halfedge
22 nextHalfedge = et.EmNextHalfedge(et.EmOppositeHalfedge(et.EmNextHalfedge (

currentHalfedge)))
23 Loop While Not (et.EmVertexValence (et.EmEndVertex(currentHalfedge)) <> 4 Or

et.EmEdge(nextHalfedge)(1) = arrStartEdge(1))
24
25 ' Change movement direction
26 currentHalfedge = et.EmOppositeHalfedge(currentHalfedge)
27 arrStartEdge = et.EmEdge(currentHalfedge)
28 nextHalfedge = currentHalfedge
29 ReDim arrEdges(-1)
30
31 ' Move to the opposite end of the polyline, create line objects on the way
32 Do
33 '' Advance
34 currentHalfedge = nextHalfedge
35 '' Create Line
36 ReDim Preserve arrEdges(Ubound(arrEdges)+1)
37 Dim arrPoint1 : arrPoint1 = et.EmPoint(et.EmStartVertex(currentHalfedge))
38 Dim arrPoint2 : arrPoint2 = et.EmPoint(et.EmEndVertex(currentHalfedge))
39 arrEdges(Ubound(arrEdges)) = Rhino.AddLine(arrPoint1, arrPoint2)
40 '' Compute next halfedge
41 nextHalfedge = et.EmNextHalfedge(et.EmOppositeHalfedge(et.EmNextHalfedge (

currentHalfedge)))
42 Loop While Not (et.EmVertexValence(et.EmEndVertex(currentHalfedge)) <> 4 Or

et.emEdge(nextHalfedge)(1) = arrStartEdge(1))
43
44 ' Join the lines into a polyline, move the polyline to "Polyline" layer
45 Dim crvFinalCurve : crvFinalCurve = Rhino.JoinCurves(arrEdges)
46 Call Rhino.DeleteObjects(arrEdges)
47
48 '' Create layer "Polyline" if one doesn't exist already
49 If Not Rhino.IsLayer("Polyline") Then
50 Rhino.AddLayer("Polyline")
51 End If
52
53 Rhino.ObjectLayer crvFinalCurve , "Polyline"
54 Rhino.ObjectColor crvFinalCurve , RGB(255,0,0)
55 End Sub

The script asks the user to pick a mesh edge (line 14). It then finds one of its halfedges (line 15) and
enters a loop in which it navigates from halfedge to halfedge either to the boundary of the mesh or
until it circles back to the starting edge, if the mesh is closed at this point. We need to find the mesh
boundary, if it exists, to have a start point from where we will create the polyline.

The first halfedge is stored as currentHalfedge (line 20). Now comes the tricky part for navigating to the
next halfedge in the polyline. We have to move first to the next halfedge, then to the opposite

halfedge and from there one more time to the next halfedge (line 22).4 This step will be repeated until

we hit the mesh boundary or circle back to our starting edge arrStartEdge (line 23). When we arrive
there we can change the movement direction and walk back. We do this simply by returning the
opposite halfedge of our currentHalfedge which is pointed in the opposite direction. Again we define
a starting edge and the nextHalfedge variable (line 26-28). In the following loop we will move back
along the polyline the same way we did before but now we will create a curve on every edge we visit.

4 The line 22 is too long to fit on this sheet of paper in one piece so it has been divided into two lines. If you open the
example script in your script editor you will notice that it is still in one piece there.

21

We find the start point and the end point of each edge (line 37-38), and create a curve between them
(line 39). We need to store the generated curves in an array to be able to join them into a polyline
later. The array was defined as an empty array on line 29 (arrEdges (-1) means the array is empty where
arrEdges (0) would mean that the array contains one element with the index zero). In the beginning of
every loop we redimension the array (line 36) to add one free space on its end which will store the
next curve object. After all curves are created we join them into a polyline and delete the original
curves (line 45-46). If there is no layer “Polyline” in the scene we create it (line 49-51). We put our
polyline on that layer (line 53), and give it a red color to make it distinguishable in the viewport (line
54).

22

2.6.5 Vertex Ring
In the following example we will discuss a script which takes a vertex as input and finds the first ring
of vertices around it. It creates Rhino point objects in the coordinates of those vertices. The halfedge
data structure navigation part of this script is similar to the one in the 3rd example. You can regard the
following example as a warm-up for our final exercise in this chapter. Here’s what we need to do:

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call VertexRing()
6 ' This script asks for one vertex as user input. It finds the first ring of vertices
7 ' around the selected vertex, stores them into the arrVertices array and creates
8 ' Rhino point objects in those vertices.
9 Sub VertexRing()
10 Dim et, arrStartVertex , arrStartPoint , arrPoints(), arrHalfedge , arrVertices(),

arrStartEdge
11 Set et = Rhino.GetPlugInObject("EvoluteTools for Rhino")
12
13 ' Pick vertex, find its halfedge, store vertex handle and its point coordinates in
14 ' two seperate arrays.
15 arrStartVertex = et.PickVertex(1, 1, "select one vertex")
16 arrHalfedge = et.EmHalfedge(arrStartVertex)
17 ReDim arrVertices(0)
18 ReDim arrPoints(0)
19 arrVertices(0) = arrStartVertex
20 arrStartPoint = et.EmPoint(arrStartVertex)
21 arrPoints(0) = arrStartPoint
22 arrStartEdge = et.EmEdge(arrHalfedge)
23
24 ' Loop through all outgoing halfedges of the vertex and add their end vertices
25 ' to the array. Add vertex coordinates to second array.
26 Do
27 Dim intVerticesInArray : intVerticesInArray = Ubound(arrVertices)
28 Dim intPointsInArray : intPointsInArray = Ubound(arrPoints)
29 ReDim Preserve arrVertices(intVerticesInArray + 1)

1. Get vertex
2. Get halfedge
3. Store halfedge’s end vertex in an array
4. Create Rhino Point
5. Go to next outgoing halfedge
6. Store halfedge’s end vertex in an array, add rhino point
7. Repeat this until you hit the first halfedge again

23

30 ReDim Preserve arrPoints(intPointsInArray + 1)
31 arrVertices(intVerticesInArray + 1) = et.EmEndVertex(arrHalfedge)
32 arrPoints(intPointsInArray + 1) = et.EmPoint(arrVertices(intVerticesInArray + 1))
33 arrHalfedge = et.EmNextHalfedge(et.EmOppositeHalfedge(arrHalfedge))
34 Loop While et.emEdge(arrHalfedge)(1) <> arrStartEdge(1)
35
36 ' Create point objects
37 Call Rhino.AddPoints(arrPoints)
38 End Sub

We start by asking the user to select one mesh vertex from his viewport (line 15). We then find one
outgoing halfedge of that vertex (line 16). The script will randomly return one of the possible
halfedges. This is not important because we know that the halfedge is outgoing, thus we will loop
through all outgoing halfedges starting from there and select their end vertices. The arrays for storing
our vertices (arrVertices) and their point coordinates (arrPoints) are redefined. They now hold each one
element so we can store the vertex that the user selected (line 17-18). We will later add all other
vertices and their point coordinates to those arrays. First we will remember our first halfedge’s edge as
arrStartEdge (line 22). This way, when we find ourselves again at this edge, we will know that we have
completed a full circle through the outgoing halfedges of the selected vertex.

We enter now a loop through all the outgoing halfedges of our selected vertex. The arrays arrVertices
and arrPoints are redefined to feature an empty space in which the next vertex/vertex coordinate will
be stored (line 27-30). The end vertex of the current halfedge is stored at the last place (the empty
place that we created on line 29) in the arrVertices array (line 31). The respective point coordinates of
that vertex are stored in the arrPoints array (line 32). We advance through the halfedge data structure
to the next outgoing halfedge by going first to the opposite halfedge of our current halfedge and
from there to its next halfedge. This new halfedge will enter the next loop as arrHalfedge and its end
vertex will be stored in the array. The loop repeats until it arrives at arrStartEdge (line 34). After all
vertices are stored in the arrVertices array and their respective point coordinates in the arrPoints array,
we use the latter array to create Rhino point objects in those coordinates (line 37).

24

2.6.6 Vertex nRing
This will be the last exercise in this chapter. Again, we will create a script which will return the nRing5

of a selected vertex and add Rhino points to the returned vertices. This time we will spice it up a little
by letting the user decide how many rings the script should return. This will implicate some deeper
nesting of loops which looks complicated at first, but isn’t at all once you take your time to analyze the
script. I’ll be using the „MeshNRing“ function to return the array of vertices in this script. You can copy
the function to your own scripts and just call it like it is called here on line 19.

First we ask the user to pick one vertex and to tell the script how many rings of vertices should be
selected (line 16-17). The number of rings “N” will be used in the function for counting purposes in the
first loop. The MeshNRing function is called on line 19. It takes the starting vertex which the user has
selected and the number of rings he/she wants to select as input. The output of the function is the
arrVertices array which stores all vertex handles belonging to the nRing. The function will be discussed
separately further below. After the function has returned the vertices, we will need to know the
number of vertices/elements in the arrVertices array. It is found on line 21 and stored in the
intNoOfVertices variable. This number will be used to limit our next loop to the same number of
repetitions. The loop (line 22-25) goes through all vertices in the array one by one and finds the point
coordinates of each vertex (line 23). It then creates Rhino point objects in those coordinates (line 24).
On the following page is the complete script with the MeshNRing function. The function will be
discussed on the next page.

5 The nRing is the ring of vertices which can be reached with “n” steps starting from the starting vertex.

1. Get vertex
2. Get halfedge
3. Create point in end vertex
4. Repeat this for all outgoing halfedges
5. Do this once in every newly created point (repeat N times)

25

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call UniversalVertexNRing()
6 ' This script creates points in all vertices belonging to the nRing*
7 ' around the selected vertex.
8 ' The number of rings is user specified
9 ' *The NRing is the ring of vertices which can be reached with N steps
10 ' from the starting vertex
11 Sub UniversalVertexNRing()
12
13 Dim et, arrStartVertex , N, arrVertices , intNoOfVertices , i
14 Set et = Rhino.GetPlugInObject("EvoluteTools for Rhino")
15 ' Get Vertex and number of rings
16 arrStartVertex = et.PickVertex(1, 1, "select one vertex")
17 N = Rhino.GetInteger("number of rings around the vertex")
18 ' Call function
19 arrVertices = MeshNRig(arrStartVertex , N)
20 ' Add Rhino point objects to the vertices
21 intNoOfVertices = Ubound(arrVertices)
22 For i=0 To intNoOfVertices
23 Dim arrPoint : arrPoint = et.EmPoint(arrVertices(i))
24 Call Rhino.AddPoint(arrPoint)
25 Next
26 End Sub
27
28 Function MeshNRing(ByVal Vertex, ByVal N)
29 ' This function takes a unique vertex handle and a integer "N" as input.
30 ' It finds all the vertices in the NRing of the selected vertex.
31 Dim et, arrHalfedge , arrVertices(), arrStartEdge , i, j, l
32 Set et = Rhino.GetPlugInObject("EvoluteTools for Rhino")
33 ' Add the selected vertex as first element to the array
34 ReDim arrVertices(0)
35 arrVertices(0) = vertex
36
37 arrHalfedge = et.EmHalfedge(Vertex)
38 arrStartEdge = et.EmEdge(arrHalfedge)
39 Dim intPrevNoInArray : intPrevNoInArray = Ubound(arrVertices)
40 Dim intNewNoInArray : intNewNoInArray = 1
41
42 ' N Loops for N rings of vertices
43 For i=1 To N
44 Dim k : k = intNewNoInArray - intPrevNoInArray
45 intPrevNoInArray = Ubound(arrVertices)
46 Dim intPrevNoInArrayStatic : intPrevNoInArrayStatic = intPrevNoInArray
47 ' Loop through the outgoing halfedges of every vertex in the ring and
48 'add end vertex to the array if it isn't already there.
49 For j=0 To k-1
50 arrHalfedge = et.EmHalfedge(arrVertices(intPrevNoInArrayStatic - j))
51 arrStartEdge = et.EmEdge(arrHalfedge)
52 Do
53 Dim intPrevNoInArray2 : intPrevNoInArray2 = Ubound(arrVertices)
54 Dim arrVertex : arrVertex = et.EmEndVertex(arrHalfedge)
55 Dim isFound
56 isFound = False
57
58 '' Search the array of vertices for the current vertex "arrVertex"
59 For l=0 To Ubound(arrVertices)-1
60 Dim arrVerticesIndex : arrVerticesIndex = et.EmIndex(arrVertices(l))
61 Dim arrVertexIndex : arrVertexIndex = et.EmIndex(arrVertex)
62 If arrVerticesIndex = arrVertexIndex Then
63 isFound = True
64 End If
65 Next
66 '' If the current vertex doesn't exist in the array then add it
67 If Not isFound Then
68 ReDim Preserve arrVertices(intPrevNoInArray2 + 1)
69 arrVertices(intPrevNoInArray2 + 1) = et.EmEndVertex(arrHalfedge)
70 End If
71 '' Advance
72 arrHalfedge = et.EmNextHalfedge(et.EmOppositeHalfedge(arrHalfedge))
73 Loop While et.emEdge(arrHalfedge)(1) <> arrStartEdge(1)
74 Next
75
76 intNewNoInArray = Ubound(arrVertices)
77 Next
78
79 intPrevNoInArray = Ubound(arrVertices)
80 MeshNRing = arrVertices
81 End Function

26

The function:

The function starts similar to the main subroutine. The first few lines are used to declare some
variables and to call the EvoluteTools scripting interface object.

Before we continue our way through the function line by line I will first explain how this function is
built up. You should not have a panic attack if you don’t understand this one right away, because it is
a little complicated. The function features four nested loops.

The first loop (line 43-77) repeats once for every nRing of vertices which the user wants to have
selected. Remember that we asked the user for the number of nRings on line 17 in the regular part of
the script. We used then that number as input for the MeshNRing function. That number determines
now how many times the first loop will be repeated.

The second loop (line 49-74) loops through all new vertices in arrVertices. The first time it runs just
once for the selected vertex, but the second time it will repeat “n” times for “n” newly added vertices
to the arrVertices array.

The third loop (line 52-73) repeats once for every outgoing halfedge of the current vertex
(arrHalfedge) which is fed to it by the previous loop. It finds the end vertex (arrVertex) of each outgoing
halfedge and compares it to the existing vertices in the arrVertices array. If it is not already in the
arrVertices array it will be added by this third loop. The loop continues as long as the current edge is
different from arrStartEdge which was defined on line 51.

The fourth loop (line 59-65) actually does the comparing of the current vertex, provided by the third
loop, and the list of vertices. It tells the third loop whether to add its current vertex to the list or just to
move on to the next one.

I will try to clarify it further by going line by line through the function. The user selected vertex is
added to the arrVertices array on first place (line 35). We find one outgoing halfedge of that vertex and
store its edge as arrStartEdge. The intPrevNoInArray variable is set to the current number of elements
in the arrVertices array and the intNewNoInArray is set to “1” for now (line 39-40). We enter the first
loop on line 43 and define the value “k” (line 44). This value tells us how many new vertices are added
to the arrVertices array and thus it tells the second loop how many times to repeat (once for every
new vertex). After that we have to update the value stored in intPrevNoInArray (line 45). This value is
also stored in the intPrevNoInArrayStatic variable (line 46). The second loop is started on line 49. Here
we extract the halfedge (arrHalfedge) of the newly added vertices from the arrVertices array one at a
time and set its edge to be our arrStartEdge (line 50-51). The third loop starts on line 52. In this loop we
will find the neighboring vertices of the current vertex. First we will check how many vertices there are
in the arrVertices array and store that information in intPrevNoInArray2 (line 53). On line 54 we find the
end vertex (arrVertex) of arrHalfedge - arrHalfedge is provided by the previous loop (see line 50 for
arrHalfedge). The variable isFound is defined to be False (line 55-56).

The last loop starts on line 59. This loop compares the current vertex to all existing vertices in the
arrVertices array. For this we need to get the indices of all vertices and compare them (line 60-61). If
the index of the current vertex matches with the index of one of the existing vertices in the array,
then this is a sign that the current vertex has been visited before and already is stored in the
arrVertices array. In that case the isFound variable is changed to True (line 62-64). If no match is

27

found the isFound variable stays False . The fourth loop ends on line 65, which brings us back to
the third loop. We know now whether the vertex that we defined on line 54 already exist in
arrVertices or not. If not then we add an empty space at the end of the arrVertices array and add the
vertex to that array (line 67-70). We advance to the next outgoing halfedge of the current vertex
and loop until we hit the edge from where we started (line 72-73). The third loop is exited on line
73 and the second loop on line 74. After the 2nd, 3rd and 4th loop is exited we prepare the
intPrevNoInArray variable for a new round in loop number one (line 76). The first loop is exited on line
77. After all our loops are completed the arrVertices array should hopefully hold all the vertices we
need. We have to define the function output to be that array of vertices (line 80).

The function ends on line 81 and this might be just the right time for you to have a break and enjoy a
cold beverage.

28

3. Mesh Editing

3.1 About this chapter
The EvoluteTools for Rhino workflow consists of 4 basic steps plus one fifth step which will be
introduced in the last chapter of this Primer:

 1. Create the reference surface
 2. Create the coarse mesh
 3. Subdivision
 4. Optimization
 5. Post processing

The reference geometry is the geometrical shape which we are trying to match as close as possible
with our mesh. The reference can be any Rhino surface or mesh or even justone or more curves in
space. It can be created using the broad spectrum of Rhino tools or it can be imported from other CAD
systems. It makes no difference so I’ll let this topic go.

The mesh creation process starts with a manual creation of the coarse mesh. Depending on the
complexity of the reference geometry the coarse mesh can be very simple or fairly complicated thus
the creation process of the coarse mesh can become a little cumbersome sometimes. This is however
one of the most creative parts of the workflow in EvoluteTools for Rhino. The user creates a base
object from which the final mesh and thus the built structure will evolve. I would suggest that you
take your time when creating the coarse mesh and try to do it right the first time. It is of course no
tragedy if you find out later that you could achieve better results in the optimization if you had a
different coarse mesh. You can always go back to the step where you create the coarse mesh and redo
it, but doing it right the first time will probably save you some time in the future. The evolution from
coarse- to the final mesh is an iterative process of subdivision and optimization in which the mesh is
refined and push/pulled into shape6.

 Create the reference surface
 Create the coarse mesh
 Subdivision
 Optimization
 Post processing

In this chapter we will concentrate on the subdivision step of the workflow.

6 For further information on the topics of reference geometry, coarse mesh, subdivision and optimization see Kris
Hammerberg’s EvoluteTools Primer.

29

3.2 Divide et Impera
EvoluteTools for Rhino uses a Top Down approach to achieve the optimal mesh for a given reference
geometry. It starts with an input geometry and a coarse mesh which is then refined and subdivided

via an appropriate procedure7. The goal of the mesh subdivision is to achieve a certain layout of the

mesh edges and a desired initial density of the mesh. The density of a mesh is measured in the
number of faces or edge lengths.

‘It is useful to think about refinement as a two-step procedure: change the connectivity (number of
vertices and the way they are connected) and then change the geometry (the position of the

vertices).’8 This means that after each subdivision step the vertices change their position. A planar

quad face might not subdivide into four smaller planar faces. In some cases it is necessary to make
smaller or bigger manual changes to the mesh before or after optimization (the processes of
subdivision and optimization are often alternating). The smaller changes like deleting a few edges or
adding some loop cuts can be easily done with the excellent EvoluteTools commands in Rhino. There
are however cases when those changes can become really time consuming, e.g., if you work on a
large scale project featuring a highly complex mesh.

3.3 Examples
On the following pages I will go through some example scripts for mesh editing and explain them
step by step. The example files are available as download together with this Primer. Each example file,
if there is one for the particular exercise, is named according to the name of the section in this Primer
in which it is displayed. The files have been set up so that you can run the script and see the outcome
without having to adjust any settings. You should always choose to load the optimization options
settings when prompted while opening an example file.

The Optimization Options Importance settings are crucial for the successful completion of some of the
scripts, so be careful when you experiment with those options in the example files.

7 See the EvoluteTools Primer
8 Pottman, H. & Asperl A. & Hofer, M. & Kilian, A., Architectural Geometry, Bentley Institute Press, 2007, p 390.

30

3.3.1 Edge Length Analysis
We will start this chapter’s examples with a really simple one. We will write a script which will return
the length of the shortest and the longest edge in a mesh. This is something which will be useful in
our other scripts. The code will be encapsulated into a Function which we can call later in other
scripts. Below is the complete script with the ExtremeEdges function. It returns an array holding the
shortest and the longest edge’s length. In addition to that the script returns the handles of the
shortest and longest mesh edge as ShortestEdge and LongestEdge variables. Those variables have to
be provided as function input.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call EdgeLength ()
6 ' This script finds the shortest and the longest edge of a mesh
7 Sub EdgeLength ()
8 ' Declaration of variables
9 Dim et, objMesh, EdgeLengths , dblShortestEdgeLength , dblLongestEdgeLength ,

ShortestEdge , LongestEdge
10 ' Get EvoluteTools plugin object
11 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
12 If IsNull(et) Then Exit Sub
13
14 'Get user input
15 objMesh = Rhino.GetObject("Select the mesh", 32)
16
17 ' Call the function to return the longest and shortest edge values
18 EdgeLengths = ExtremeEdges (objMesh, ShortestEdge , LongestEdge)
19 dblShortestEdgeLength = EdgeLengths (0)
20 dblLongestEdgeLength = EdgeLengths (1)
21
22 ' Print the results to the command line
23 Call Rhino.Print("Longest edge's length: " & CStr(dblLongestEdgeLength))
24 Call Rhino.Print("Shortest edge's length: " & CStr(dblShortestEdgeLength))
25 End Sub
26
27
28 Function ExtremeEdges (ByVal TheMesh, ByRef ShortestEdge , ByRef LongestEdge)
29 ' This function returns the handle of the shortest and the longest mesh edge.
30 ' The lengths of the longest and the shortest mesh edge are stored in an array.
31 ' The shortest edge's length is stored at position 0.
32 ' The longest edge's length is stored at position 1.
33
34 ' Declaration of variables
35 Dim et, intNoOfEdges , i, currentEdge , dblEdgeLength , arrEdgePoints , EdgesLengths (3)
36 Dim dblSmallestLength , dblLargestLength
37 ' Get EvoluteTools plugin object
38 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
39 If IsNull(et) Then Exit Function
40
41 dblSmallestLength = 99999999
42 dblLargestLength = 0
43 intNoOfEdges = et.EmNumberOfEdges (TheMesh)
44
45
46 ' Loop through all edges off the mesh, find the longest
47 For i=0 To intNoOfEdges - 1
48 currentEdge = et.EmEdge(TheMesh, i)
49 '' Extract the endpoints of the edge,
50 '' measure the distance between them
51 arrEdgePoints = et.EmGetEdgePoints (currentEdge)
52 dblEdgeLength = Rhino.Distance(arrEdgePoints (0), arrEdgePoints (1))
53 If dblEdgeLength < dblSmallestLength Then
54 dblSmallestLength = dblEdgeLength
55 ShortestEdge = currentEdge
56 End If
57 If dblEdgeLength > dblLargestLength Then
58 dblLargestLength = dblEdgeLength

31

59 LongestEdge = currentEdge
60 End If
61 Next
62
63 ' Return length of the shortest and the longest mesh edge
64 EdgesLengths (0) = dblSmallestLength
65 EdgesLengths (1) = dblLargestLength
66
67 ' Function output
68 ExtremeEdges = EdgesLengths
69
70 End Function

We start by declaring some variables and loading the EvoluteTools scripting interface object (19-12).
After the user is asked to select a mesh in the Rhino viewport it is time to call the function (line 18).
The function takes three variables as inputs: the mesh, the shortest edge and the longest edge. In this
moment only the mesh needs to be a valid variable. The ShortestEdge and LongestEdge variables will
be assigned in the function itself, thus right now they should be empty. After calling the function the
script jumps from line 18 to line 28. Again the variables for the function are defined and the
EvoluteTools scripting interface object is set (line 35-39). In the function we will loop through all mesh
edges and measure their length. The length will then be compared to the currently longest and
shortest edge. If the current edge is longer than the longest edge so far, or is shorter than the shortest
edge so far it will replace it. We need some numerical values to compare with the first measured edge.
Those values are dblSmallestLength and dblLargestLength (line 41-42). They are set to “0” and
“99999999” to make sure that the length of the first measured edge will replace both values. In order
to initiate a loop through all mesh edges we need to know how many there are (line 43). The loop
starts on line 47. The edge with the index “i” is picked from the mesh. We extract the two end points of
that edge and measure the distance between them in order to find the edge’s length (line 48-52). The
edge’s length is compared to the current smallest and largest edges. As mentioned above, if the
current edge is shorter than the shortest edge so far it will replace it as ShortestEdge and its length will
be saved to the dblSmallestLength variable (line 53-55). The same rule is applicable to the case when
the current edge is longer as the longest edge so far (line 57-59). The lengths of the shortest and the
longest edge are stored to the EdgesLengths array which is also the output of this function. The
handles of these two edges will be returned to the main subroutine via the ShortestEdge and
LongestEdge variables. Back in the main subroutine we extract the two lengths from the function
output to their respective variables (line 19-20) and print them to the command line (line 23-24).

32

3.3.2 Edge Length Subdivision
In the following example we are going to generate a mesh layout for a tower-like shape. We start with
a really simple coarse mesh (a box without top and bottom) and subdivide it into a very good initial
mesh for optimization. Instead of just subdividing the coarse mesh with the standard procedures and
hoping for the best, we will take the wheel and control the subdivision process with this script. The
script uses a target edge length as input and subdivides the edges of the coarse mesh until they meet
the target. Note that it is necessary to run the script in two steps to go from coarse to refined mesh. In
the first run you should select one horizontal edge, top or bottom, of the mesh. The script will then
generate the vertical edges of the mesh. After the script completes you should run it one more time
and select one of the vertical edges when asked to get the final shape as shown below.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call EdgeLengthSubdivision ()
6 ' This script subdivides the mesh by loop cutting a selected edge until the edge's length
7 ' is shorter than a specified value. This script works with quadrilateral meshes.
8 Sub EdgeLengthSubdivision ()
9

10 Dim et, objMesh, dblMaxEdgeLength , currentEdge , arrEndpoints
11 Dim dblCurrentEdgeLength , arrResult
12 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
13 ' Get user input
14 objMesh = Rhino.GetObject("Select the mesh", 32)
15
16 If IsNull(objmesh) Then
17 Rhino.Print "Mesh could not be selected!"
18 Exit Sub
19 End If
20
21 currentEdge = et.PickEdge(1,1, "Select the edge")
22 dblMaxEdgeLength = Rhino.GetReal("Maximum edge length? ", 1.5)
23
24 ' Add loop cuts to the edge until it becomes shorter than dblMaxEdgeLength
25 Do
26 '' Measure the length of the edge
27 arrEndpoints = et.EmGetEdgePoints (currentEdge)
28 dblCurrentEdgeLength = Rhino.Distance(arrEndpoints (0), arrEndpoints (1))
29 '' If the edge is to long add a loop cut
30 If dblCurrentEdgeLength > dblMaxEdgeLength Then
31 Call et.MeshLoopCut (currentEdge)

33

32 Call et.Optimize(objMesh, arrResult)
33 End If
34
35 Loop While dblCurrentEdgeLength > dblMaxEdgeLength
36 End Sub

As you can see this is a very powerful little piece of code. It starts with the declaration of some
variables and the mesh as user input. You can always declare all the variables in only one line. I used
two lines just to fit the text into this document.

If an error occurs during the selection of the mesh the script will abort and write an error message:
"Mesh could not be selected!" (line 16-19). You can use the IsNull(anyVariable) method after
you define any variable to check if everything went according to plan. This can be especially
helpful when debugging a script.

After we made sure that the objMesh variable contains the mesh we ask the user to select one
edge to subdivide and to specify the maximal allowed edge length (line 21-22).

The loop (line 25-35) measures the length of the selected edge and applies a loop cut to it if it is
longer than the maximal allowed edge length. After every loop cut (line 31) the mesh has to be

optimized (line 32) in order to get evenly distributed polylines on the mesh9. The et.Optimize

function takes the mesh as first input variable and the arrResult variable as second input. The
arrResult variable is used by EvoluteTools to store some background data about the optimization.
You do not have to worry about this. The only important thing is to define the arrResult variable
somewhere in the script (I like to do that right at the beginning of the script) and to plug it into
the et.Optimize function. The loop will continue until the selected edge becomes shorter than the
specified value.

9 A fair amount of FairnessCurvature is needed to distribute the polylines evenly on the mesh. All example files are pre-set
with optimization options which are tested and work good in the particular case. You are however welcome to experiment
and change those options as you like.

34

3.3.3 Max Edge Length Loop Cutting
The following example shows a script which densifies the mesh by adding loop cuts to certain edges.
The user specifies a maximal possible edge length. The script will find the longest edge in the mesh,
measure its length and if it is longer than it should be it adds a loop cut in the middle of that edge.
After every loop cut the mesh is relaxed to distribute the polylines evenly. This process of loop cutting
and relaxing repeats until all edges are shorter than the specified maximal length.

This approach will be helpful when you want to create an initial density in a mesh before you proceed
to optimization. It is also helpful when a mesh is prepared for production. When it comes to
manufacturing the mesh, there are always some limitations. An obvious case is the panel size which
can be produced using a particular manufacturing technique. With this script you can limit the
maximum edge length so it can be manufactured with the machines you are working with. After this
example you should be able to write your own scripts which limit the area or the diagonal length of a
face/panel.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call MaxEdgeLengthLoopCutting ()
6 ' This script densifies the mesh until all edges are shorter than a
7 ' specified maximum length. This script works with quadrilateral meshes.
8 Sub MaxEdgeLengthLoopCutting ()
9

10 ' Declaration of variables
11 Dim et, objMesh, intNoOfEdges , dblMaxEdgeLength , dblLongestEdgeLength
12 Dim i, arrResult, dblLongestEdgeAfter , LongestEdge , dblLongestEdgeBefore
13 ' Get EvoluteTools plugin object
14 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
15 If IsNull(et) Then Exit Sub
16 ' Get inputs
17 objMesh = Rhino.GetObject("Select the mesh", 32)
18 intNoOfEdges = et.EmNumberOfEdges (objmesh)
19 dblMaxEdgeLength = Rhino.GetReal("Maximum edge length? ", 2)
20 ' Find the longest edge in the mesh
21 dblLongestEdgeBefore = ExtremeEdges (objMesh,, LongestEdge)(1)
22 ' Find longest mesh edge. If it is longer than the maximum length
23 ' perform a loop cut.
24 Do
25 dblLongestEdgeLength = ExtremeEdges (objMesh,, LongestEdge)(1)
26 If dblLongestEdgeLength > dblMaxEdgeLength Then
27 Call et.MeshLoopCut (LongestEdge)
28 Call et.Optimize(objMesh, arrResult)
29 Else
30 Exit Do
31 End If
32 Loop
33 ' Optimize!!!
34 Call et.Optimize(objMesh, arrResult)
35

35

36 ' Find the longest edge in the mesh
37 dblLongestEdgeAfter = ExtremeEdges (objMesh,, LongestEdge)(1)
38
39 Call Rhino.Print("Longest edge's length before: " & CStr(dblLongestEdgeBefore))
40 Call Rhino.Print("Longest edge's length after: " & CStr(dblLongestEdgeAfter))
41 End Sub
42
43
44 Function ExtremeEdges (ByVal TheMesh, ByRef ShortestEdge , ByRef LongestEdge)
45 ' This function returns the handle of the shortest and the longest mesh edge.
46 ' The lengths of the longest and the shortest mesh edge are stored in an array.
47 ' The shortest edge's length is stored at position 0.
48 ' The longest edge's lenght is stored at position 1.
49
50 ' Declaration of variables
51 Dim et, intNoOfEdges , i, currentEdge , dblEdgeLength , arrEdgePoints , EdgesLengths (3)
52 Dim dblSmallestLength , dblLargestLength
53 ' Get EvoluteTools plugin object
54 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
55 If IsNull(et) Then Exit Function
56
57 dblSmallestLength = 99999999
58 dblLargestLength = 0
59 intNoOfEdges = et.EmNumberOfEdges (TheMesh)
60
61 ' Loop through all edges off the mesh, find the longest
62 For i=0 To intNoOfEdges - 1
63 currentEdge = et.EmEdge(TheMesh, i)
64 '' Extract the endpoints of the edge,
65 '' measure the distance between them
66 arrEdgePoints = et.EmGetEdgePoints (currentEdge)
67 dblEdgeLength = Rhino.Distance(arrEdgePoints (0), arrEdgePoints (1))
68 If dblEdgeLength < dblSmallestLength Then
69 dblSmallestLength = dblEdgeLength
70 ShortestEdge = currentEdge
71 End If
72 If dblEdgeLength > dblLargestLength Then
73 dblLargestLength = dblEdgeLength
74 LongestEdge = currentEdge
75 End If
76 Next
77
78 ' Return length of the shortest and the longest mesh edge
79 EdgesLengths (0) = dblSmallestLength
80 EdgesLengths (1) = dblLargestLength
81
82 ' Function output
83 ExtremeEdges = EdgesLengths
84
85 End Function

After the variables are defined and the user is asked for the input information we run the
ExtremeEdges function from the first example of this chapter (line 21). The function returns the length
of the longest mesh edge before it makes any changes to the mesh. This information will be shown in
the command line after the script is completed. On line 22 a new loop is initiated. The length of the
longest mesh edge is compared to the user specified maximum edge length (line 26). If the length of
the current edge is longer than allowed the script performs a loop cut through that edge and
optimizes the mesh (line 27-28). The optimization step is necessary to relax the mesh and distribute its
polylines evenly. This process of measuring and loop cutting is repeated until the LongestEdge’s length
becomes shorter than the value specified in the dblMaxEdgeLength variable. After all edges are
subdivided we run the ExtremeEdges function again to make sure that the script worked. The longest
edge values before and after running the script are displayed in the command line for visual reference
(line 39-40).

36

3.3.4 Min Edge Length Delete Polylines
The script in this example does exactly the opposite of the previous. While the previous script added
density to a mesh by performing loop cuts on selected edges the following script reduces the density
in a mesh by deleting some polylines. This technique can be used when you are working on a mesh
which consists of panels which are irrationally small for production. The script lets you specify a
minimum edge length. It will then delete polylines from the mesh until there are no edges shorter
than the specified value.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call MinEdgeLengthDeletePolylines ()
6 ' This script makes the mesh less dense by deleting its polylines until all edges are
7 ' longer than a specified minimum length. This script works with quadrilateral meshes.
8 Sub MinEdgeLengthDeletePolylines ()
9 On Error Resume Next

10
11 ' Declaration of variables
12 Dim et, objMesh, intNoOfEdges , dblMinEdgeLength , currentHalfedge
13 Dim dblShortestEdgeLength , polyEdge, arrResult, ShortestEdge , LongestEdge
14 Dim dblShortestEdgeBefore , dblShortestEdgeAfter
15 ' Get EvoluteTools plugin object
16 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
17 If IsNull(et) Then Exit Sub
18
19 ' Get inputs
20 objMesh = Rhino.GetObject("Select the mesh", 32)
21 intNoOfEdges = et.EmNumberOfEdges (objmesh)
22 dblMinEdgeLength = Rhino.GetReal("Minimal allowed edge length? ", 3)
23
24 ' Find the Shortest edge in the mesh
25 dblShortestEdgeBefore = ExtremeEdges (objMesh, ShortestEdge , LongestEdge)(0)
26 Do
27 dblShortestEdgeLength = ExtremeEdges (objMesh, ShortestEdge , LongestEdge)(0)
28 If dblShortestEdgeLength < dblMinEdgeLength Then
29 currentHalfedge = et.EmHalfedge (ShortestEdge)
30 polyEdge = et.EmEdge(et.EmNextHalfedge (currentHalfedge))
31
32 '' If the edge is a boundary find another one to delete
33 If et.EmIsBoundary (polyEdge) Then
34 polyEdge = et.EmEdge(et.EmPrevHalfedge (currentHalfedge))
35 End If
36 '' Delete the polyline connected to polyEdge
37 Call et.MeshDeletePolyline (polyEdge)
38 Call et.Optimize(objMesh, arrResult)
39 Else
40 Exit Do
41 End If
42 Loop
43 ' Optimize!!!
44 Call et.Optimize(objMesh, arrResult)

37

45
46 ' Find the Shortest edge in the mesh
47 dblShortestEdgeAfter = ExtremeEdges (objMesh, ShortestEdge , LongestEdge)(0)
48
49 Call Rhino.Print("Shortest edge's length before: " & CStr(dblShortestEdgeBefore))
50 Call Rhino.Print("Shortest edge's length after: " & CStr(dblShortestEdgeAfter))
51
52 End Sub
53
54
55 Function ExtremeEdges (ByVal TheMesh, ByRef ShortestEdge , ByRef LongestEdge)
56 ' This function returns the handle of the shortest and the longest mesh edge.
57 ' The lengths of the longest and the shortest mesh edge are stored in an array.
58 ' The shortest edge's length is stored at position 0.
59 ' The longest edge's lenght is stored at position 1.
60
61 ' Declaration of variables
62 Dim et, intNoOfEdges , i, currentEdge , dblEdgeLength , arrEdgePoints , EdgesLengths (3)
63 Dim dblSmallestLength , dblLargestLength
64 ' Get EvoluteTools plugin object
65 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
66 If IsNull(et) Then Exit Function
67
68 dblSmallestLength = 99999999
69 dblLargestLength = 0
70 intNoOfEdges = et.EmNumberOfEdges (TheMesh)
71
72 ' Loop through all edges off the mesh, find the longest
73 For i=0 To intNoOfEdges - 1
74 currentEdge = et.EmEdge(TheMesh, i)
75 '' Extract the endpoints of the edge,
76 '' measure the distance between them
77 arrEdgePoints = et.EmGetEdgePoints (currentEdge)
78 dblEdgeLength = Rhino.Distance(arrEdgePoints (0), arrEdgePoints (1))
79 If dblEdgeLength < dblSmallestLength Then
80 dblSmallestLength = dblEdgeLength
81 ShortestEdge = currentEdge
82 End If
83 If dblEdgeLength > dblLargestLength Then
84 dblLargestLength = dblEdgeLength
85 LongestEdge = currentEdge
86 End If
87 Next
88
89 ' Return length of the shortest and the longest mesh edge
90 EdgesLengths (0) = dblSmallestLength
91 EdgesLengths (1) = dblLargestLength
92
93 ' Function output
94 ExtremeEdges = EdgesLengths
95
96 End Function

The user is asked to select a mesh and to specify a minimum edge length for the mesh. We find
(similar to the previous example) the shortest mesh edge before we manipulate the mesh at all. We
enter a loop on line 26. With each iteration of the loop we find the shortest mesh edge10 and compare
its length with the dblMinEdgeLength value (line 28). If the edge is shorter than the specified
dblMinEdgeLength variable the script deletes the polyline associated with the neighboring edge. To
find a neighboring edge we first need to find the edge’s halfedge (line 29). From there we move to the
next halfedge and set its edge as polyEdge (line 30). Next we have to check if this edge isn’t a
boundary edge because we don’t want to delete the mesh boundaries. If polyEdge is a boundary edge
we will have to redefine it. For this we go back to our initial halfedge (currentHalfedge), and from there
we will go to the previous halfedge instead to the next. Now we can make the polyEdge variable store
the handle of the edge associated to the previousHalfedge (line 33-34). Either way, after we defined the
polyEdge variable we are going to delete the polyline associated to that edge using the

10 We use the ExtremeEdges function from the previous examples again

38

et.MeshDeletePolyline function from EvoluteTools (line 37). Following, the mesh is optimized in order
to distribute the polylines evenly. The script will remove polylines as long as the shortest mesh edge is
shorter than the specified minimal edge length.

When the loop through is completed (line 26-42) the script optimizes the mesh one more time and
measures the shortest edge after all the changes are done. The shortest edge’s length before and after
running the script are displayed in the command line for visual reference after the script completes
(line 49-50).

39

3.3.5 Triangles to quads
The following example deals with the problem of mesh clean-up. During his research for the
EvoluteTools Primer, Kris found that it would be helpful to have a script which would convert the
triangular faces along the mesh boundary, which emerge when a quadrilateral mesh is diagonalized,
into triangular shaped quad faces. This would allow you to continue working on a pure quadrilateral
mesh after performing a diagonal subdivision. The mesh could further be subdivided with strip
subdivision, which is not possible if the mesh has triangular faces along its borders. We’ve decided to
showcase this script here in the EvoluteTools Scripting Primer.

The script will identify the triangular faces along the mesh boundary, find the boundary edge and
divide it in two by adding a new vertex in the middle of the edge.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5
6 Call TrianglesToQuads ()
7 ' This script will find triangular faces on the mesh boundary and convert
8 ' them to triangular shaped quad faces
9 Sub TrianglesToQuads ()
0

11 Dim et, objMesh, intNoOfFaces , i, j, k, l, currentFace , faceValence
12 Dim currentHalfedge , faceVertices , Points(1)
13 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
14
15 ' Get user input
16 objMesh = Rhino.GetObject("Select the mesh", 32)
17
18 For l=0 To 1
19
20 intNoOfFaces = et.EmNumberOfFaces (objMesh)
21
22 ' Loop through mesh faces, convert boundary triangular faces to quads
23 For i=0 To intNoOfFaces - 1
24 currentFace = et.EmFace(objMesh, i)
25 faceValence = et.EmFaceValence (currentFace)
26 faceVertices = et.EmGetFaceVertices (currentFace)
27
28 '' Continue only if the face is triangular, if not go to next face
29 If faceValence = 3 Then
30 currentHalfedge = et.EmHalfedge (currentFace)
31
32 '' Find the face's boundary edge
33 For j=0 To 2
34 currentHalfedge = et.EmNextHalfedge (currentHalfedge)
35 If et.EmIsBoundary (et.EmEdge(currentHalfedge)) Then

40

36
37 '' Add Vertex to midpoint of boundary edge
38 Dim midPoint, NewVertex, NewFace
39 Points(0) = et.EmPoint(et.EmStartVertex (currentHalfedge))
40 Points(1) = et.EmPoint(et.EmEndVertex (currentHalfedge))
41 midPoint = MeanVector (Points)
42 NewVertex = et.EmAddVertex (objMesh, midPoint)
43
44 '' Add new vertex to the array of face vertices
45 ReDim Preserve faceVertices (Ubound(faceVertices)+1)
46 faceVertices (3) = NewVertex(0)
47
48 '' Delete triangular face, create quadrilateral face
49 Call et.EmDeleteFace (currentFace)
50 NewFace = et.EmAddFace(faceVertices)
51
52 Exit For
53 End If
54
55 Next
56
57 End If
58 Next
59 Next
60 End Sub
61
62 Function MeanVector (ByVal arrPoints)
63 Dim m : m = Array(0, 0, 0)
64 Dim p
65 For Each p In arrPoints
66 m = Rhino.VectorAdd(m, p)
67 Next
68 MeanVector = Rhino.VectorScale (m, 1 / (UBound(arrPoints) + 1))
69 End Function

 The script starts by asking the user for an input mesh. Right after that it enters a loop (line 18-59).
The loop starts before anything happens to the mesh and ends when everything else is done. The
loop is used to repeat the whole script one more time after it has finished. This is because during
the script, some mesh faces get deleted, others are created from scratch, so it happens that the
script misses one or two faces when it is run only once. Sure there are more elegant ways to fix this
problem, but since this script completes really fast and it is not a big deal in terms of time if it runs
again one or two times I thought we could try this method for once. Inside the loop we count all
the mesh faces (line 20). We then enter a new loop through all the faces on line 23. We select one
face by its index and find its valence and its vertices (line 24-26). The loop will only continue if we
have a triangular face, else it starts again with a new face (line 29). We find one halfedge and from
there loop through all three of them to find the boundary edge of that face (line 30-35). When the
boundary is found we extract its end points and find the midpoint using the MeanVector function
(line 39-41). We add a new vertex in those coordinates to the mesh (line 42). In order to create a
new face from the three vertices of the existing face and the newly created vertex we need to
collect them into one array (line 45-46). The old triangular face is deleted and a new quadrilateral
face is created in its position (line 49-50).

The MeanVector function takes any number of point coordinates as input and returns the average.
It can be used (amongst other things) to calculate the coordinate of an edge’s midpoint. We will
use it later again in example 5.5.2 to find a face’s midpoint. What it does is adding all point
coordinates together (line 65-67) and finding the average x, y and z values (line 68).

41

4. Mesh Optimization

4.1 Optimization
The fourth step in the EvoluteTools workflow is the optimization. In this step the subdivided mesh is
bent into shape. The optimization process proceeds according to user specified optimization

options.11

 Create the reference surface
 Create the coarse mesh
 Subdivision
 Optimization
 Post processing

The final result of the optimization depends on the optimization options and the constraints which
the user determines. Depending on the specifics of a project, there can be lots of constraints which
you have to set. This process might become very exhausting and time consuming when dealing with
large projects and large numbers of constraints. This chapter will try to deal with those problems
using the EvoluteTools scripting interface. You will see some examples in which the script automates
the complete workload around the setting of all the possible constraints. This should help you deal
with such problems faster and more effective. It might seem to be a lot of work to write a complete
script for a task like setting some vertices to be coplanar. It might be, if there are not too many of them
and if you plan on doing it only once, but when you have a script which automates the task you can
run it as many times as you want. This will give you the freedom to experiment and try different
solutions for the given problem, plus when you start working on a new project you will have the script
already waiting in your library.

4.2 Optimization options
The optimization options importance dialog is accessed by clicking the icon in the toolbar when
working in Rhino.

Here we will set the importance of some optimization options depending on our needs in the

particular case. I will explain just the few options which will be used the most here12.

11 See Chapter 4.2 Optimization options
12 For a more elaborate explanation of the optimization options see the EvoluteTools Primer

42

FairnessCurvature – Fairness or niceness determines the visual niceness of the mesh polylines. It tries
to straighten the angles between two adjacent edges. Some of our scripts need some fairness to work

Coplanarity – Coplanarity will force vertices, which are flagged as coplanar to a plane, to snap to that
plane

Planarity – Planarity tries to flatten faces. This might contradict other optimization options like
Fairness.

IdealEdgeLength – IdealEdgeLength will adapt flagged edges to a specified length

4.3 Constraints
As mentioned above, the user is able to flag some constraints in the mesh prior to optimization.
Usually this is done manually via the buttons on the EvoluteTools toolbar.

You can flag some vertices to stay in position during the optimization (ET Set Vertex Fixed), or to be
curve points (ET Set Vertex Curve Point), you can set some edges to a desired length (ET Edge Length

Optimization)13 etc. The problem with this approach becomes clear when you work on large, complex

meshes and you have to flag a large number of elements. On the following pages we will automate
processes which would otherwise take hours to complete if you would work manually.

13 For a more elaborate explanation of the flagging constraints see the EvoluteTools Primer

43

4.4 Examples

4.4.1 Face Attractor
As usual we will start the chapter with an easy example. We will write a script which recreates an
attracting/detracting effect within a mesh. The script will ask the user to select one or more faces and
to tell it which is the desired edge length of those faces’ edges. It then finds all those edges and flags
them to be optimized for Ideal Edge Length. This little exercise is your inauguration to the optimization
scripting with EvoluteTools. You will learn some basic principles about flaging constraints which will
be used a lot in the following examples.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call FaceAttractor ()
6 ' This script flags the edges of one or more selected faces to be optimized
7 ' for ideal edge length. This script works with triangular and quadrilateral meshes.
8 Sub FaceAttractor ()
9 ' Declaration of variables
10 Dim et, objMesh, arrFaces, i, arrEdges, strCmd, strCmd2, arrResults
11
12 ' Get EvoluteTools plugin object
13 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
14 If IsNull(et) Then Exit Sub
15
16 ' Get input
17 objMesh = Rhino.GetObject("Select the mesh", 32)
18 arrFaces = et.PickFace(0, 0, "Select the faces")
19
20 ' Flag edges of the selected face(s)
21 '' If only one face is selected
22 If Ubound(arrFaces) = 1 And Not IsArray(arrFaces(0)) Then
23 Dim singleEdges
24 singleEdges = et.EmGetFaceEdges (arrFaces)
25 Call et.SetEdgeLengthOptimization (singleEdges)
26 Else
27 '' If more than one face is selected
28 For i=0 To Ubound(arrFaces)
29 arrEdges = et.EmGetFaceEdges (arrFaces(i))
30 Call et.SetEdgeLengthOptimization (arrEdges)
31 Next
32 End If
33

44

34 ' Command line
35 strCmd = "! _etOptionsImportance _IdealEdgeLength "
36 strCmd2 = "! _etOptionsToggles _IdealEdgeLength "
37 Call Rhino.Command(strCmd, 0)
38 Call Rhino.Command(strCmd2, 0)
39
40 ' Optimize!
41 Call et.Optimize(objMesh, arrResults)
42
43 End Sub

We start our script by asking the user to select one or more faces (line 18). The edges of those faces
will be set to a fixed length. The script would be much shorter and simpler if we hadn’t to distinguish
between two possible cases: the case when only one face is selected and the case when more than
one face is selected. Before we move on, let me explain what difference it makes. Faces are stored as
arrays in the ET scripting interface. An array holding one face (arrFaces) contains two elements: the
mesh ID (arrFaces (0)) and the face handle (arrFaces (1)).

If the user selects two or more faces, then the arrFaces array becomes nested. This means that the
elements inside the array are arrays themselves. In the image above you see that both elements in the
arrFaces array are strings. The image below shows what happens when there are two faces in the
array.

Each element of arrFaces is another array holding two elements. The variable arrFaces(0) was the mesh
ID in the first case and now it became the first of two selected faces. The variable arrFaces(1) was
originally the face handle of the selected face and now it is the second of two selected faces. Both of
these arrays hold the mesh ID and the face handle of their respective faces.

To flag all edges of the selected faces we need to perform a loop through all selected faces, find their
edges and flag them. Because of the way faces are stored we might run into problems when the user
selects only one face. We determine the number of repetitions of the loop with the number of faces (if
there are six faces selected we want to repeat the loop six times). The loop is defined as follows:

For j=0 To Ubound(arrFaces)

45

This works well for more than one face because the Ubound function returns the number of
elements in an array and thus the loop makes the right number of repetitions. This loop would
however repeat two times if only one face was selected because the arrFaces array would still hold
two elements: the mesh ID and the face handle.

According to the distinction between one and more than one selected faces that we made above
the script is divided in two parts.

The first part (line 22-26) will be executed if the user selects one face. The second part (line 28-32)
will be executed if more than one face is selected. First we need to know how many elements
there are in the arrFaces array. If Ubound(arrFaces) returns any value different than one it means
that there is more than one face in the arrFaces array and the script jumps directly to line 28. If
Ubound(arrFaces) returns one it means that the array holds two elements. We still don’t know if it
holds one or two faces because of the way faces are stored as explained above. To be sure the
script asks if the first element in the array (arrFaces (0)) is another array. If it is, it means that the
arrFaces array holds two arrays, or in other words, two faces. The script jumps to line 28.

Now that we double checked and know for sure that the user has only one face selected, we can
go on and extract the face’s edges and flag them for edge length optimization (line 24-25). In this
case (when one face is selected) the script would now jump to line 34.

If there were more than two faces selected in the beginning, the script would jump from line 22 to
line 26. It loops through all selected faces (line 28). Now we only need to extract the edges of each
face and flag them for edge length optimization (line 29-30).

When all face edges that we wanted to flag are flagged, the script continues on line 37. We invoke
the command line to set the etOptionsImportance and the etOptionsToggles parameters for our
edges (line 35-38) before optimizing the mesh (line 41).

46

4.4.2 Closest Polyline Vertices Function
The following function will be very important for some of the forthcoming scripts, thus it will be
explained in detail here in an autonomous example. The function takes the mesh and a plane object
as input and returns the set of mesh vertices belonging to a polyline which are closest to the input
plane. It does so by looping through all mesh polylines and measuring the distance from every
polyline vertex to the plane. The maximum distance is returned for every polyline. The script then
compares the results and returns the vertices belonging to the closest polyline. The image below
shows mesh vertices which belong to the same polyline.

1 Function ClosestPolylineVertices (ByVal objMesh, ByVal objPlane, ByVal Tolerance, ByVal

PlaneNumber , ByVal NoOfPlanes)
2 ' This function loops through mesh polylines and finds the one which is
3 ' on average closest to a input plane. This function works with quadrilateral meshes.
4
5 ' Declaration of variables
6 Dim et, intNoOfEdges , i, j, k, arrVisitedEdges
7 ' Get EvoluteTools plugin object
8 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
9 If IsNull(et) Then Exit Function
10
11 '' Find number of edges, create array of visited edges
12 intNoOfEdges = et.EmNumberOfEdges (objMesh)
13
14 ReDim arrVisitedEdges ((intNoOfEdges)-1)
15 For i=0 To Ubound(arrVisitedEdges)
16 arrVisitedEdges (i) = False
17 Next
18
19 '' For every edge find the polyline and all of its vertex coordinates
20 Dim dblSmallestMax : dblSmallestMax = 100000
21 For j=0 To intNoOfEdges - 1
22 Dim arrCurrentEdge : arrCurrentEdge = et.EmEdge(objMesh, j)
23 Dim dblDistance , arrEdgePoints
24 arrEdgePoints = et.EmGetEdgePoints (arrCurrentEdge)
25 dblDistance = Abs(Rhino.DistanceToPlane (objPlane, arrEdgePoints (0)))
26
27 If Not arrVisitedEdges (j) = True Then
28 If Not et.EmIsBoundary (arrCurrentEdge) Then
29 If Not dblDistance > Tolerance Then
30 '' Remember the visited edges for a faster query
31 Dim arrHalfedge , intIndex, nextHalfedge , currentHalfedge
32 nextHalfedge = et.EmHalfedge (arrCurrentEdge)
33 Do
34 '' Advance
35 currentHalfedge = nextHalfedge
36 '' Compute next halfedge

37 nextHalfedge = et.EmNextHalfedge (et.EmOppositeHalfedge
(et.EmNextHalfedge (currentHalfedge)))

38 Loop While Not (et.EmVertexValence (et.EmEndVertex (currentHalfedge)) <>
4 Or et.EmEdge(nextHalfedge)(1) = arrCurrentEdge (1))

39 '' Change direction
40 currentHalfedge = et.EmOppositeHalfedge (currentHalfedge)
41 Do
42 intIndex = et.EmIndex(et.EmEdge(currentHalfedge))
43 arrVisitedEdges (intIndex) = True

47

44 currentHalfedge = et.EmNextHalfedge (et.EmOppositeHalfedge
(et.EmNextHalfedge (currentHalfedge)))

45 Loop While Not (et.EmIsBoundary (currentHalfedge) Or et.EmFaceValence
(et.EmFace(currentHalfedge))
<> 4 Or et.EmFaceValence (et.EmFace(et.EmOppositeHalfedge (currentHalfedge
))) <> 4 Or et.EmEdge(currentHalfedge)(1) = arrCurrentEdge(1))

46
47 '' Measure distances to given plane, find maximum value and store it with
48 '' the polyline it belongs to
49 Dim arrCurrentPoints : arrCurrentPoints = et.EmGetPolylinePoints

(arrCurrentEdge)
50 ReDim arrDist(-1)
51
52 For k=0 To Ubound(arrCurrentPoints)
53 ReDim Preserve arrDist(Ubound(arrDist)+1)
54 Dim arrPoint : arrPoint = arrCurrentPoints (k)
55
56 If IsArray(arrPoint) Then
57 If IsArray(objPlane) Then
58 arrDist(Ubound(arrDist)) = Rhino.DistanceToPlane (objPlane,

arrPoint)
59 arrDist(Ubound(arrDist)) = Abs(arrDist(Ubound(arrDist)))
60 End If
61 End If
62 Next
63
64 Dim dblCurrentMax : dblCurrentMax = Rhino.Max(arrDist)
65
66 If dblCurrentMax <= dblSmallestMax Then
67 dblSmallestMax = dblCurrentMax
68 Dim arrClosestEdge : arrClosestEdge = arrCurrentEdge
69 End If
70 End If
71 End If
72 End If
73 Next
74
75 '' Take vertices from closest polyline
76 Dim arrClosestVertices
77 arrClosestVertices = et.EmGetPolylineVertices (arrClosestEdge)
78
79 Rhino.Print "Plane number " & CStr(PlaneNumber) & " of " & CStr(NoOfPlanes)
80 Rhino.Print "Smallest maximum distance: " & CStr(dblSmallestMax)
81 ClosestPolylineVertices = arrClosestVertices
82 End Function

The variables for this function are defined on line 6. Note that the mesh (objMesh), the plane
(objPlane), Tolerance, PlaneNumber and NoOfPlanes are inputs in the function and therefore they
should be defined in the script before the function is called. We find the number of edges in the mesh
on line 12. Later we will loop through all edges but not one at a time. This time we will start the loop
with one edge, but in the same loop iteration we will visit all other edges which belong to the polyline
of the first edge. We want to make sure not to visit the same edge two or more times because that
would make our script slow and maybe even unusable. We create an array, arrVisitedEdges (line 14)
which will store all the edges of the mesh and provide information about whether the edge has been
visited before or not. Right after the arrVisitedEdges array has been redimensioned on line 14, it offers
only empty slots for all mesh edges. We will loop once through all mesh edges and set the Boolean
False for every edge (line 15-17). The following image shows some of the elements of the
arrVisitedEdges array at this point.

48

Later we will change the Boolean from False to True for each edge we visit. First we need to set the
dblSmallestMax variable to a very high value to make sure that the maximum distance of the first
polyline which we will measure is smaller than the current value (line 20). We now enter a loop
through all mesh edges. First, we will take the edge with the index “j” and measure the distance of
one of its points to the plane (line 25). After getting the distance of one of the edge’s end points to
the plane it is time to check if this edge has been visited before (line 27). Note that we set all edges
to False before entering this loop to make sure that the first edge will pass this test. Further we
check if the current edge (if it hasn’t been visited before) is a boundary edge (line 28). Since we are
not interested in the mesh boundary, here the script will move to the next edge if it is the case. If
the edge has passed all previous steps we check the distance of one of that edge’s end points to
our plane. If it is larger than the provided Tolerance, we can eliminate this edge right away
because there surely are other edges in the mesh which are closer to the plane. If this is the case
the script will start the loop again and go to the next mesh edge. If our edge (arrCurrentEdge) has
passed all the previous tests, we go on and extract its halfedge (line 32). With that halfedge we
enter a loop where we find all other edges in its polyline and set their respective Boolean value in
the arrVisitedEdges array to True. First the index of the current edge is extracted (line 42), the edge
is identified in arrVisitedEdges with its index and the Boolean is set to True (line 43). The image
below shows the arrVisitedEdges array after some edges have been visited.

On line 34 we advance to the next edge/halfedge of the polyline. The loop is repeated until we hit
a boundary Or the face valence of one of the edge’s faces is different than four Or until we arrive at
the starting edge (line 45). Now that we have remembered all visited edges, in order to not visit
them over and over again, we get all polyline points. EvoluteTools has a pretty handy function for
this which allows us to get them all at once with one line of code, instead of having to loop again
through all polyline halfedges and extract the start and end points of each halfedge. The function
is called et.EmGetPolylinePoints and it’s used on line 49. It takes only one edge as input and returns
the point coordinates of all vertices which belong to that edge’s polyline. The point coordinates
are now stored in arrCurrentPoints. On line 52 we start a loop through all points in arrCurrentPoints
in which we will measure the distance of each point to the plane and calculate the average
distance. The arrDist array is used to store the distance of every point as a double. Every time the
loop repeats, the array is broadened by one new space to store the new information. You have
seen this technique in action before. Before measuring the distance between the point and the
plane, the script checks quickly if everything is ok (line 56-57). The distance is measured on line 58.
You need to be careful in this sort of situations. If the point is behind the plane, the

49

Rhino.DistanceToPlane function returns a negative value. For that reason we will take the absolute
value of what is returned by Rhino.DistanceToPlane (line 59). You could do this using just one line if
you like. After the distance from every polyline vertex to the plane is calculated and stored in
arrDist, we calculate the maximum distance of that polyline to the plane (line 64). The current
maximum distance is compared to the smallest maximum distance so far, and if it is shorter, it will
replace the smallest maximum distance dblSmallestMax. The arrCurrentEdge is then set to be the
arrClosestEdge (line 66-68). After we have determined which the closest polyline to our plane is, we
store its vertices in the arrClosestVertices array (line 77). The script will print the smallest maximum
distance together with the number of the current plane to the command line for visual reference
while the script is running (line 79-80). This can be deleted or commented out if you don’t want it
to appear and slow down your computer.

The last step is to define the output of the function. This function will return the vertices which
belong to the polyline which is closest to an input plane (line 81).

50

4.4.3 Snap Mesh to Curves
The following script will enable you to align the mesh polylines as close as possible to previously
drawn curves on the reference geometry. It creates a plane through the start, mid and endpoint of a
curve and sets mesh vertices to be coplanar to that plane, so it is accurate only when the curves are
coplanar. Maybe a good exercise for you would be to try to find another solution which would be
accurate regardless of the shape of the input curves.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call SnapMeshToCurves ()
6 ' This script will snap the closest mesh vertices to curves on the
7 ' reference geometry. This script works with quadrilateral meshes.
8 Sub SnapMeshToCurves ()
9 ' Declaration of variables

10 Dim et, objMesh, arrCurves, Tolerance, i, j , arrCurvePoints (), objPlane()
11 Dim closestVertices (), arrVisitedEdges (), arrResult
12
13 ' Get EvoluteTools plugin object
14 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
15 If IsNull(et) Then Exit Sub
16
17 ' Get the mesh and the curves
18 objMesh = Rhino.GetObject("Select the mesh", 32)
19 arrCurves = Rhino.GetObjects ("Select the curves", 4)
20 Tolerance = Rhino.GetReal("Maximum distance from curve to be considered? ", 3)
21
22 ReDim closestVertices (-1)
23 ReDim objPlane(-1)
24
25 ' Loop through selected curves, snap closest vertices to the curve
26 For i=0 To Ubound(arrCurves)
27 Dim currentCurve
28 currentCurve = arrCurves(i)
29
30 '' Check if it is a valid curve
31 If Not Rhino.IsCurve(currentCurve) Then
32 Exit Sub
33 End If
34
35 '' Array for the 3 curve points
36 ReDim arrCurvePoints (2)
37
38 '' Get Start, Mid and Endpoint of the curve
39 arrCurvePoints (0) = Rhino.CurveStartPoint (currentCurve)
40 arrCurvePoints (1) = Rhino.CurveMidPoint (currentCurve)
41 arrCurvePoints (2) = Rhino.CurveEndPoint (currentCurve)
42
43 '' Create Plane from the three curve points
44 ReDim Preserve objPlane(Ubound(objPlane)+1)

51

45 objPlane(i) = Rhino.PlaneFitFromPoints (arrCurvePoints)
46 '' Find closest set of vertices for that plane
47 ReDim Preserve closestVertices (Ubound(closestVertices)+1)
48 closestVertices (i) = ClosestPolylineVertices (objMesh, objPlane(i), Tolerance,

i+1, Ubound(arrCurves)+1)
49 Next
50
51 ' Flag vertices as coplanar
52 For j=0 To Ubound(objPlane)
53 Call et.SetVerticesCoplanar (closestVertices (j), 7, 1, objPlane(j))
54 Next
55 ' Optimize!
56 Call et.Optimize(objMesh, arrResult)
57
58 End Sub
59
60
61 Function ClosestPolylineVertices (ByVal objMesh, ByVal objPlane, ByVal Tolerance,

ByVal PlaneNumber , ByVal NoOfPlanes)
.
.
.

We start by asking the user for a mesh, some curves to which the mesh should be aligned and a
tolerance value (line 18-20). The curves should be on the surface and coplanar for best results. We will
now loop through all selected curves. For each curve there will be one plane created through its start,
mid and endpoint. We will then find the closest mesh polyline to that plane using the
ClosestPolylineVertices function that we discussed in the previous example. We enter the loop on line
26. The loop repeats once for every selected curve (Ubound(arrCurves)). The currentCurve variable
holds the selected curve with the index “i” (line 28). The script will check if everything went according
to plan (line 31-33). We will now extract the curve’s start, mid and endpoint to create a plane from
those points. First, we need an array with three empty slots to store our points (line 36). Now we can
extract the three points and save them to the right place in the array (line 39-41). The final steps are to
create a plane from those points and to find the closest polyline vertices to that plane. We need to
store the plane and its closest polyline vertices for later, thus we need an array for each. The arrays
have been defined as empty arrays on line 22 and 23. Now we will add one empty space to the arrays
in each loop repetition (line 44 and 47). The plane which we create from our three curve points is
stored as new element in the objPlane array (line 45). We use the ClosestPolylineVertices function to
find the closest set of vertices to that plane, those vertices are then stored in the closestVertices array
(line 48). Notice that the plane and the vertices are stored under the same index “i” in their respective
arrays. The function ClosestPolylineVertices takes five input parameters: the mesh, the plane, the
tolerance, the plane number and total number of planes.

Function ClosestPolylineVertices (ByVal objMesh, ByVal objPlane, ByVal Tolerance,
ByVal PlaneNumber , ByVal NoOfPlanes)

The number of the current plane (planeNumber) is i+1 and the total number of planes (NoOfPlanes) is
the number of elements in the arrCurves array (Ubound(arrCurves)+1).

After the loop has completed we will have an array of “n” planes and an array of “n” sets of vertices.
We will loop now through all planes in objPlane and set the vertices from closestVertices with the same
index to be coplanar to that plane (line 52-54). We optimize the mesh in the end to see the result in
the viewport.

52

4.4.4 Closest Non Polyline Vertices function
This function returns the set of vertices which are closest to an input plane, but do not belong to a
common polyline. Those vertices belong to an imagined polyline which is diagonal to the mesh faces.
The image below shows the set of vertices which we will try to find automatically. This technique will
be used practically in the next example (4.4.5) but first, let’s take a look at how this function works.

1 Function ClosestNonPolylineVertices (ByVal objMesh, ByVal objPlane, ByVal Tolerance, ByVal

PlaneNumber , ByVal NoOfPlanes)
2 ' This function loops through mesh vertices and finds the group of vertices
3 ' which is closest to an input plane. This function works with quadrilateral meshes.
4
5 ' Declaration of variables
6 Dim et, i, j, intNoOfEdges , intNoOfHalfedges , arrVisitedHalfedges , startEdge
7 Dim dblSmallestMax , closestSetOfVertices , Distance
8
9 ' Get EvoluteTools plugin object
10 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
11 If IsNull(et) Then Exit Function
12
13 intNoOfEdges = et.EmNumberOfEdges (objMesh)
14 intNoOfHalfedges = intNoOfEdges * 2
15
16 ReDim arrVisitedHalfedges ((intNoOfHalfedges)-1)
17 For i=0 To Ubound(arrVisitedHalfedges)
18 arrVisitedHalfedges (i) = False
19 Next
20
21 dblSmallestMax = 99999999999
22 For j=0 To intNoOfHalfedges - 1
23 Dim currentHalfedge , nextHalfedge , arrVertices , dblDistances , dblCurrentMax , intIndex,

otherHalfedge
24
25 ' Check whether the current halfedge has been visited before
26 If arrVisitedHalfedges (j) = False Then
27 nextHalfedge = et.EmHalfedge (objMesh, j)
28 Distance = Rhino.DistanceToPlane (objPlane, et.EmPoint(et.EmStartVertex

(nextHalfedge)))
29 Distance = Abs(Distance)
30
31 If Distance < Tolerance Then
32 Rhino.Print "Plane number " & CStr(PlaneNumber) & " of " & CStr(NoOfPlanes)
33 Rhino.Print "Halfedge number " & CStr(j) & " of " & CStr(intNoOfHalfedges -

1)
34 startEdge = et.EmEdge(nextHalfedge)
35
36 ' Remember visited halfedges for a faster query
37 Do
38 '' Advance
39 currentHalfedge = nextHalfedge
40 '' Compute next halfedge
41 nextHalfedge = et.EmNextHalfedge (et.EmOppositeHalfedge (et.EmNextHalfedge

(et.EmOppositeHalfedge (et.EmNextHalfedge (et.EmNextHalfedge (currentHalfedge))))))

53

42 Loop While Not (et.EmIsBoundary (et.EmEdge(nextHalfedge)) Or et.EmVertexValence
(et.EmStartVertex (currentHalfedge)) <> 4 Or et.EmVertexValence (et.EmEndVertex
(currentHalfedge)) <> 4 Or et.EmEdge(nextHalfedge)(1) = startEdge(1))

43 '' Change direction
44 nextHalfedge = et.EmOppositeHalfedge (currentHalfedge)
45
46 ReDim arrVertices (-1)
47 ReDim dblDistances (-1)
48 '' Remember all visited halfedges and store start vertex of each halfedge
49 Do
50 currentHalfedge = nextHalfedge
51 '' Remember visited halfedge
52 intIndex = et.EmIndex(currentHalfedge)
53 arrVisitedHalfedges (intIndex) = True
54
55 '' Remember other halfedge
56 otherHalfedge = et.EmNextHalfedge (et.EmNextHalfedge (currentHalfedge))
57 intIndex = et.EmIndex(otherHalfedge)
58 arrVisitedHalfedges (intIndex) = True
59
60 '' Save start vertex to an array
61 ReDim Preserve arrVertices (Ubound(arrVertices)+1)
62 arrVertices (Ubound(arrVertices)) = et.EmStartVertex (currentHalfedge)
63 '' Save distance to plane
64 ReDim Preserve dblDistances (Ubound(dblDistances)+1)
65 dblDistances (Ubound(dblDistances)) = Rhino.DistanceToPlane (objPlane,

et.EmPoint(et.EmStartVertex (currentHalfedge)))
66 dblDistances (Ubound(dblDistances)) = Abs(dblDistances (Ubound(dblDistances)))
67
68 '' Compute next halfedge
69 nextHalfedge = et.EmNextHalfedge (et.EmOppositeHalfedge (et.EmNextHalfedge

(et.EmOppositeHalfedge (et.EmNextHalfedge (et.EmNextHalfedge (currentHalfedge))))))
70 Loop While Not (et.EmIsBoundary (et.EmEdge(nextHalfedge)) Or

et.EmVertexValence (et.EmStartVertex (currentHalfedge)) <> 4 Or
et.EmVertexValence (et.EmEndVertex (currentHalfedge)) <> 4 Or
et.EmEdge(nextHalfedge)(1) = startEdge(1))

71
72 dblCurrentMax = Rhino.Max(dblDistances)
73 If dblCurrentMax <= dblSmallestMax Then
74 dblSmallestMax = dblCurrentMax
75 closestSetOfVertices = arrVertices
76 End If
77 End If
78 End If
79 Next
80 ClosestNonPolylineVertices = closestSetOfVertices
81 End Function

The function takes five inputs just like the ClosestPolylineVertices function. Those variables have to be

defined in the script which calls this function.14 It first finds the number of edges and the number of

halfedges in the mesh (line 13-14). Similar to the ClosestPolylineVertices function, we will create an
array for all halfedges. With a quick loop through that array the Boolean value False is set for all
halfedges. Later, when we visit a halfedge this value will be changed to True. The dblSmallestMax
value is set to a very high value to make sure that the first measured value is smaller and therefore
replaces it (line 21). The function starts looping through the mesh halfedges on line 22 and checks if
the current halfedge has been visited before. Only if it has not been visited the function proceeds, else
it starts over again with the next halfedge (line 26). The distance of the halfedge’s start vertex to the
input plane is measured (line 27-29). Only if that distance is within a given tolerance the function
proceeds (line 31). Now that our halfedge has passed all previous tests we print some info about it to
the command line (line 32-33). The function remembers the edge to which the current halfedge
belongs for later (line 34). The next step is to move along the imagined polyline until we hit a
boundary or until we arrive at the startEdge from line 34 again (line 37-42). The loop is repeated until

14 See next example – 4.4.5 Snap Vertices To Planes

54

we hit a boundary, Or the vertex valence of the start or end vertex of our currentHalfedge becomes
different than four, Or until we arrive at the starting edge (line 42). On line 44 we change the
movement direction. This plays no role if the polyline is closed and we previously found the start
edge after looping through all polyline edges. If we find a mesh boundary, then we have to turn
around and walk in the opposite direction to the other mesh boundary15. The next step is to
remember all visited halfedges in order not to visit them repeatedly. This is done by extracting the
current halfedge’s index and changing the Boolean value at this spot in the arrVisitedHalfedges
array to True (line 50-53). Each halfedge in a quad mesh has a pair on the opposite side of its face
which belongs to the same imagined polyline. This halfedge is memorized on line 56-58. Now the start
vertex of the current halfedge is added to the arrVertices array and its distance to the input plane to
the dblDistances array (line 61-66). The function moves to the next halfedge in our imagined polyline
until it hits a boundary or the startEdge (line 69-70). When all vertices belonging to a polyline are
found and their distances to the plane stored, we find the largest distance (line 72). This value is
compared to the currently smallest maximum distance. If dblCurrentMax is smaller than
dblSmallestMax (line 73) it will replace it and become dblSmallestmax (line 74). The current set of
vertices will become the closestSetOfVertices (line 75), which is also the output of this function (line 80).

15 See image 2.6.4 Select Polyline

55

4.4.5 Is Mesh Diagonalized function
This is a very short function which asks the user whether the input mesh has been diagonalized or not.
We will use this function in the following example but there will surely be other situations where you
can use the same function again. The mesh becomes “diagonalized” if it is subdivided with the
Diagonalize option. Diagonalize adds a new vertex in the middle of each face and connects it to the
existing corner vertices. The image below shows a mesh before and after diagonalization.

1 Function IsMeshDiagonalized
2 ' Declaration of variables
3 Dim arrItems, arrDefaults , arrResults , blnVal
4
5 arrItems = Array("Diagonalized" , "No", "Yes")
6 arrDefaults = array(False)
7
8 arrResults = Rhino.GetBoolean ("Is the mesh diagonalized" , arrItems,
arrDefaults)

9
10 If IsArray(arrResults) Then
11 For Each blnVal In arrResults
12 Rhino.Print blnVal
13 Next
14 End If
15
16 IsMeshDiagonalized = arrResults (0)
17 End Function

The function is called in the script without providing any input information. Two default arrays are
defined on line 5 and 6. The function then asks the user if the mesh has been diagonalized or not (line
8). The result of this query is printed to the command (line 10-14) and the IsMeshDiagonalized output
is set to be arrResults (line 16). Since we used the Rhino.GetBoolean function on line 8 the
IsMeshDiagonalized function can only return True or False.

56

4.4.6 Snap Vertices to Planes
This script will let the user choose a mesh and a set of surface objects (planes) from the Rhino
viewport. It will then find the closest set of vertices to each plane and flag them as coplanar to the
corresponding plane. This can be used to align the mesh automatically to floor slabs in a tower.

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4 Call SnapVerticesToPlanes ()
5 ' This script will snap the closest set of mesh vertices to planes in the viewport
6 ' This script works with quadrilateral meshes.
7 Sub SnapVerticesToPlanes ()
8 ' Declaration of variables
9 Dim et, objMesh, objSurfaces , arrCurves, blnDiagonalized , Tolerance

10 Dim arrSurfacePoints , i, j , k, arrCurvePoints (), objPlane()
11 Dim closestVertices (), arrVisitedEdges (), arrResult
12 ' Get EvoluteTools plugin object
13 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
14 If IsNull(et) Then Exit Sub
15
16 ' Get user input
17 objMesh = Rhino.GetObject("Select the mesh", 32)
18 objSurfaces = Rhino.GetObjects ("Select the planes", 8)
19 Tolerance = Rhino.GetReal("Maximum distance from plane to be considered? ", 5)
20
21 ' Ask the user if the mesh is diagonalized
22 blnDiagonalized = IsMeshDiagonalized
23
24 ' Convert input surfaces to planes
25 ReDim closestVertices (-1), objPlane(-1)
26 For k=0 To Ubound(objSurfaces)
27 ReDim Preserve objPlane(Ubound(objPlane)+1)
28 arrSurfacePoints = Rhino.SurfaceEditPoints (objSurfaces (k))
29 objPlane(Ubound(objPlane)) = Rhino.PlaneFitFromPoints (arrSurfacePoints)
30 Next
31
32 ' Loop through selected planes, snap closest vertices to each plane
33 For i=0 To Ubound(objPlane)
34 '' Find closest set of vertices for that plane
35 ReDim Preserve closestVertices (Ubound(closestVertices)+1)
36 If blnDiagonalized = True Then
37 closestVertices (i) = ClosestNonPolylineVertices (objMesh, objPlane(i),

Tolerance, i + 1, Ubound(objPlane)+ 1)
38 Else

57

39 closestVertices (i) = ClosestPolylineVertices (objMesh, objPlane(i), Tolerance,
i+1, Ubound(objPlane)+1)

40 End If
41 Next
42
43 ' Flag vertices as coplanar
44 For j=0 To Ubound(objPlane)
45 Call et.SetVerticesCoplanar (closestVertices (j), 7, 1, objPlane(j))
46 Next
47
48 ' Optimize!
49 Call et.Optimize(objMesh, arrResult)
50 End Sub
51
52
53 Function ClosestPolylineVertices (ByVal objMesh, ByVal objPlane)
.
.
.
127 End Function
128
129 Function ClosestNonPolylineVertices (ByVal objMesh, ByVal objPlane)
.
.
.
211 End Function
212
213 Function IsMeshDiagonalized
.
.
.
232 End Function

This script uses three functions which you might remember from earlier, the ClosestPolylineVertices
function, the ClosestNonPolylineVertices function and the IsMeshDiagonalized function. The content of
those functions has been left out in the script above because they have been elaborated in the
previous examples. The script above starts by asking the user for an input mesh, some planes (Rhino
surface objects) to which the mesh should be aligned and a tolerance value (line 17-19). It then asks
the user if the mesh is a normal or a diagonalized mesh using the IsMeshDiagonalized function (line
22). We need this information in order to choose the right function for finding the closest set of mesh
vertices to a plane (line 36-40). Since the user selects Rhino surfaces from the viewport and we need
planes in RhinoScript, we will convert the input surfaces to planes. We will loop through all surfaces,
extract their surface points and fit a plane through those points (line 26-30). Now that we have the
planes we will loop through them and find the closest set of vertices for each plane. For each plane we
will run the ClosestPolylineVertices or the ClosestNonPolylineVertices function, depending on the
outcome of the IsMeshDiagonalized function, to get the closest set of vertices to that plane (line 33-
41). When we have stored all sets of vertices we will loop once more through all planes to set the
corresponding vertices as coplanar to each plane (line 44-46). In the end we optimize our mesh to see
the result of the script (line 49). A fair amount of coplanarity should be set manually via the ET
Optimization Importance Options button in the EvoluteTools toolbar in Rhino.

58

4.4.7 Tower from Coplanarity Constraints
The following script might be one of the longest in this Primer, but it is also very powerful. It creates
the mesh layout for a tower in a matter of seconds. The result might look similar to the tower we
created in chapter 3.3.2, where we subdivided the mesh to get a desired density and a target edge
length. In fact, we will use the same script here to get the initial mesh density in the horizontal
direction, since this script here subdivides the mesh only in the vertical direction. So you should start
with the provided coarse mesh and run the script from example 3.3.2 on it to get a similar result as
below.

This will provide a new coarse mesh for testing this script. When running the script you will be asked
to select an edge. Please select one of the small boundary edges at the top or bottom of the mesh.
You will see why when we get to the explanation of this script. The new script (the current one) will
add loop cuts to the vertical edges and flag the newly created vertices to be coplanar with a
horizontal plane on a specified height. This way we can predefine at what height our floor slabs will be
and align the mesh vertices to them while we create the mesh. The script will also ask for the number
of loop cuts between two floors. This number will usually be around one or two. You can however use
this script to experiment with your design and find the optimal solution. After the script finishes, there
will be sets of vertices aligned to planes which represent the floors of the tower and one or more
loops of vertices between them. Oh, and don’t worry about the shapes that your mesh might take on
while the script is running. It will turn out just fine. You should just manually optimize the mesh a few
times after the script completes, to relax it a little and to let everything fit into its right place.

59

The image below shows the result of this script. You can see how the loop cuts are aligned with
equally spaced planes. The height of the planes is defined by the floor height on line 19. This example
shows the mesh with one loop cut between the floors of the tower.

60

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4 Call TowerFromCoplanarityConstraints ()
5 ' This script generates a mesh according to user specified constraints.
6 ' This script works with quadrilateral meshes.
7 Sub TowerFromCoplanarityConstraints ()
8 Dim et, objMesh, startingEdge , dblFloorHeight , intBetweenCuts ,

arrResult
9 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
10
11 ' Get user input
12 objMesh = Rhino.GetObject("Select the mesh", 32)
13 startingEdge = et.PickEdge(1,1, "Select the edge")
14
15 If Not et.EmIsBoundary (startingEdge) Then
16 Exit Sub
17 End If
18
19 dblFloorHeight = Rhino.GetReal("Floor height ", 5)
20 intBetweenCuts = Rhino.GetInteger ("How many polylines between two floors?

",1)
21
22 ' Find the height of the mesh
23 Dim arrPoints, dblMeshHeight , arrHalfedge , currentEdge
24
25 arrHalfedge = et.EmHalfedge (startingEdge)
26 arrHalfedge = et.EmNextHalfedge (arrHalfedge)
27 currentEdge = et.EmEdge(arrHalfedge)
28
29 arrPoints = et.EmGetEdgePoints (currentEdge)
30 dblMeshHeight = Rhino.Distance(arrPoints(0), arrPoints(1))
31 Rhino.Print "Input mesh height: " & CStr(dblMeshHeight)
32
33 ' Calculate number of floors depending on the object height and the floor

height
34 Dim intNoOfFloors
35 intNoOfFloors = dblMeshHeight \ dblFloorHeight
36 Rhino.Print "Number of floors: " & CStr(intNoOfFloors)
37
38 If intBetweenCuts <> 0 Then
39 Dim n
40 For n=1 To intBetweenCuts
41 '' Go back to the starting edge
42 arrHalfedge = et.EmHalfedge (startingEdge)
43 arrHalfedge = et.EmNextHalfedge (arrHalfedge)
44 currentEdge = et.EmEdge(arrHalfedge)
45 '' Subdivide
46 Call et.MeshLoopCut (currentEdge)
47 '' Optimize!
48 Call et.Optimize(objMesh, arrResult)
49 Next
50 End If
51
52 ' For every floor create one loop cut
53 ' flag the newly created vertices as coplanar and align to floor height
54 ' add loop-cuts between floors if necessary
55 Dim i, j, k, currentHeight , arrCurrentVertices
56 Dim intNoOfVertices , arrVisitedVertices ()

61

57 Dim intNewNoOfVertices , arrNewVisitedVertices ()
58 Dim blnFound , l, m, currentVertex1 , currentVertex2 , arrNewVertices ()
59 currentHeight = 0
60 For i=0 To intNoOfFloors -2
61 '' Go back to the starting edge
62 arrHalfedge = et.EmHalfedge (startingEdge)
63 arrHalfedge = et.EmNextHalfedge (arrHalfedge)
64 currentEdge = et.EmEdge(arrHalfedge)
65 '' Calculate the current height
66 currentHeight = currentHeight +dblFloorHeight
67
68 '' Store all existing vertices in an array
69 ReDim arrVisitedVertices (-1)
70 intNoOfVertices = et.EmNumberOfVertices (objMesh)
71
72 For j=0 To intNoOfVertices -1
73 ReDim Preserve arrVisitedVertices (Ubound(arrVisitedVertices)+

1)
74 arrVisitedVertices (Ubound(arrVisitedVertices)) = et.EmVertex(

75
76
77
78
79
80
81
82
83
84

85

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

111

objMesh, j)
Next

Call et.MeshLoopCut (currentEdge)

'' Store all existing vertices in an array
ReDim arrNewVisitedVertices (-1)
intNewNoOfVertices = et.EmNumberOfVertices (objMesh)

For k=0 To intNewNoOfVertices -1

ReDim Preserve arrNewVisitedVertices (Ubound(
arrNewVisitedVertices)+1)

arrNewVisitedVertices (Ubound(arrNewVisitedVertices)) = et.
EmVertex(objMesh, k)
Next

'' Compare arrays to find newly created vertices
ReDim arrNewVertices (-1)

For l=0 To Ubound(arrNewVisitedVertices)

blnFound = False
currentVertex1 = arrNewVisitedVertices (l)

For m=0 To Ubound(arrVisitedVertices)

currentVertex2 = arrVisitedVertices (m)
If currentVertex1 (1) = currentVertex2 (1) Then

blnFound = True
End If

Next

If blnFound = False Then

ReDim Preserve arrNewVertices (Ubound(arrNewVertices)+1)
arrNewVertices (Ubound(arrNewVertices)) = currentVertex1

End If

Next

'' Flag new vertices as coplanar
Dim thePlane : thePlane = Rhino.PlaneFromPoints (Array(0,0,

currentHeight), Array(1,0,currentHeight), Array(0,1,currentHeight))

62

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

Next

Call et.SetVerticesCoplanar (arrNewVertices , 7, 1, thePlane)
Call et.Optimize(objMesh, arrResult)

If intBetweenCuts <> 0 Then

For n=1 To intBetweenCuts
'' Go back to the starting edge arrHalfedge =
et.EmHalfedge (startingEdge) arrHalfedge =
et.EmNextHalfedge (arrHalfedge) currentEdge =
et.EmEdge(arrHalfedge)
'' Subdivide
Call et.MeshLoopCut (currentEdge)
'' Optimize!
Call et.Optimize(objMesh, arrResult)

Next
End If

130 End Sub

The script starts by asking for the mesh and a starting edge (line 12-13). This edge has to be one of the
small boundary edges on either the top or the bottom of the coarse mesh. If no boundary edge is
selected the script will abort (line 15-17). The script then asks the user for the floor height and how
many loop cuts should be made between two floors (line 19-20). In the next small block we will find
the height of the mesh. We find the halfedge of the selected edge, move to the next halfedge and get
its edge (25-27). This is the reason why you have to select one of the boundary edges when asked.
This way, by going to the next halfedge, we will always come to one of the vertical edges. The vertical
edges will change during the script because they will be subdivided numerous times, but the edges at
the top and bottom of the mesh will stay untouched. Well, now that we are at one of the long vertical
edges of the coarse mesh we can measure its length and therefore the approximate height of the
coarse mesh, which is precise enough for this task (line 29-31). The number of floors is calculated by
dividing the height of the mesh with the user specified floor height (line 34-36). If the user wants to
have loop cuts between the floors we will add the first now (line 38-50). For each loop cut we will first
go back to the starting edge (the one the user has selected) and from there advance to one
neighboring vertical edge (line 42-44). Now we call a loop cut through the vertical edge and optimize
the mesh to relax it (line 46-48). These cuts will be located between the ground and the first floor of
our tower. We enter a loop through all floors of the tower except the last (line 60). Remember how we
determined the number of floors by dividing the coarse mesh height and the floor height. Well,
usually you would loop through all the floors calculated before, but our towers design is angled at the
top (see big image) so the last plane would stick out of the reference surface. Every time the loop
starts we go back to our starting edge from where we find one neighboring vertical edge (line 62-64).
The height of the current floor is calculated on line 66. Now we need to define an empty array in
which all currently existing vertices are stored (line 69-75). We will need this array later to find out
which are the newly created vertices after we loop cut the mesh. We perform the loop cut on line 77
and again store all currently existing vertices in an array (line 77-86). This second time the array
contains the new vertices created by the loop cut as well. We will now compare the two arrays of
vertices that we have previously created. First, we start a loop through the array which holds the old
as well as the new vertices (line 91). In this loop we take one vertex from the array by its index (line 93)
and enter a new loop with that vertex (line 95). The second loop is through all the old vertices that

63

were there before we performed the loop cut on line 77. The vertex from the first loop is compared to
all vertices in the second loop and if a match is found the blnFound value is changed to True (line 95-
100). If the vertex has no match in the arrVisitedVertices array it means that it is one of the vertices
which have been created by the loop cut. The vertex is added to the array arrNewVertices (line 102-
105). After all new vertices have been found the plane representing the current floor is created on line
110. We set the vertices to be coplanar to the plane and optimize the mesh to relax it and move the
vertices to the right position (line 112-113). If there should be any loop cuts between two floors we
will create them now before exiting the loop (line 115-126).

64

5. Post Processing

5.1 About this chapter
The last chapter of this tutorial is dedicated to post processing the optimized mesh.

 Create the reference surface
 Create the coarse mesh
 Subdivision
 Optimization
 Post processing

During my research for this tutorial I found out that EvoluteTools not only enables you to optimize
your mesh but it takes you a step further. With the EvoluteTools scripting interface you can take the
leap from optimized 3D mesh to producing your beams and panels. EvoluteTools for Rhino is by
definition a plugin for mesh optimization which means that this is not an actual step in the
conventional EvoluteTools workflow but rather a little huge extra that you get for free.

This chapter will teach you to manipulate the optimized mesh and to get the most out of the
EvoluteTools scripting interface. Please remember that the example scripts below are there to give
you the power to create your own scripts that suit your needs. Now, with great power comes great
responsibility. Every freeform project needs an individually tailored solution. It would be impossible to
write one script and guarantee that it will work on every project as intended. Because of that, the
author cannot be held responsible for anything that might go wrong if you use one of the examples
below in your work without checking by yourself whether the script suits your needs or not.

65

5.2 Examples

5.2.1 Pipe Substructure
In some cases you might want to render an image of the design you have created with EvoluteTools
for Rhino. This script will help you to move your project from mesh to physical structure. It takes the
mesh as input and creates, in a matter of seconds, a solid, renderable substructure for that mesh.

The following script is a really simple example of how to build a substructure for a mesh, thus the
outcome of this script is suitable only for rendering purposes and such.

66

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5
6 Call PipeSubstructure ()
7 ' This script will create a pipe substructure for rendering purposes
8 Sub PipeSubstructure ()
9

10 Dim et, objMesh, nEdges, i, dblRadiusNormal , dblRadiusDiagonal , dblCircle, dblRadius
11 'We access the Scripting interface
12 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
13
14 ' Get user input
15 objMesh = Rhino.GetObject("Select Mesh", 32)
16 If IsNull(objMesh) Then Exit Sub
17 et.EmGarbageCollection (objMesh)
18 nEdges = et.EmNumberOfEdges (objMesh)
19
20 ' Find out which is the unit system used and propose a standard pipe radius
21 If Rhino.UnitSystem = 2 Then 'millimeters
22 dblRadiusNormal = 200
23 ElseIf Rhino.UnitSystem = 3 Then 'centimeters
24 dblRadiusNormal = 20
25 ElseIf Rhino.UnitSystem = 4 Then 'meters
26 dblRadiusNormal = 0.2
27 Else
28 dblRadiusNormal = 0.2
29 End If
30
31 dblRadiusNormal = Rhino.GetReal("Enter radius of the pipes", dblRadiusNormal , 0)
32
33 Rhino.EnableRedraw (False)
34 ReDim arrVertices (-1)
35 ReDim arrNormals (-1)
36 ReDim arrFaces(-1)
37
38 Dim arrStartPoint , arrNormal, arrBasePlane , pipe, arrEndPoint , rail
39
40 ' Pipe the edges
41 For i = 0 To nEdges-1
42 Dim arrEdge : arrEdge = et.EmEdge(objMesh, et.EmEdge(i))
43 Dim arrHalfedge : arrHalfedge = et.EmHalfedge (arrEdge, 0)
44
45 '' Creating a line to use as rail for the sweep1 command
46 '' this line replaces the actual edge
47 arrStartPoint = et.EmStartVertex (arrHalfedge)
48 arrStartPoint = et.empoint (arrStartPoint)
49 arrEndPoint = et.EmEndVertex (arrHalfedge)
50 arrEndPoint = et.EmPoint (arrEndPoint)
51 '' Creating the normal for the plane orientation
52 arrNormal = et.EmHalfedgeVector (arrHalfedge)
53
54 '' Creating the base plane for the circle which will be sweeped
55 arrBasePlane = Rhino.PlaneFromNormal (arrStartPoint , arrNormal)
56
57 Dim dblSize
58 dblRadius = dblRadiusNormal
59
60 '' Pipe the edge
61 rail = Rhino.AddLine (arrStartPoint , arrEndPoint)
62 dblCircle = Rhino.AddCircle (arrBasePlane , dblRadius)
63 pipe = Rhino.AddSweep1 (rail, dblCircle)
64
65 Next
66 Rhino.EnableRedraw (True)
67 End Sub

67

First the script asks the user for an input mesh and counts the edges of that mesh (line 15-18). It then
determines which unit system is used in the current file. We will use this information to choose which
standard value to offer the user when we ask him/her for the radius of the pipes (line 21-29). Now we
ask the user for the pipe radius (line 31). We enter a loop through all mesh edges in which the edges
will be piped one by one on line 41. In order to create the pipe around the edge we will need a circle
and a rail (the edge) to sweep the circle over. We will first extract the start and the end point of the
edge (line 47-50). We will use those points to create the rail for the sweep command. The circle that
we want to sweep along the edge should be perpendicular to the edge and located with its center at
the start point of that edge. First we extract the halfedge vector (line 52). This will serve to orient the
circle perpendicular to the edge. We can create a circle from a base plane and its radius. The base
plane is created from an origin point (start point of our edge) and a normal (the edge’s direction) on
line 55. Now that we have the endpoints of the edge, we create a line between them to serve as rail
for the sweep command (line 61). The circle is created in its right position and orientation using the
base plane that we created earlier (line 62). We can now add the pipe by sweeping the circle along the
line/edge (line 63).

68

5.2.2 The Ultimate Panel Layout for Production Script
The following script will take your finished and optimized mesh from digital concept to production. All
mesh faces, regardless of the size of the mesh or the number of faces, will be taken out of the mesh,
named and laid out for production. We will give each panel a unique name with the index “f” for face
and a unique number. The face will be copied to its right place in a grid on the World XY plane. We will
add the names of the neighboring faces to each edge of every face, so you know how to put them
back together after they have been manufactured.

We will measure the scale invariant planarity of each face. The user will specify his/her planarity
tolerance and if the planarity of a face is within that tolerance the face’s edges will be projected to the
ground and the face deleted. This will leave you with planar curves which should be usable as input
for almost every cutting machine. If the face cannot be regarded as planar and thus cannot be
manufactured from a planar material the script will return it as a 3d surface which is usable in other
more complicated production processes. The panels will further be sorted into two layers, one (blue)
for planar panels and the other (red) for non planar panels. Along with each panel there will be some
information (scale invariant planarity, planarity, panel area …) printed in the lower left corner of its
frame. You will be able by now to change the information which is displayed here on your own by
editing the script a little if you need to. After the script is completed you will have the input mesh with
a name tag on each mesh face and a grid of the same faces laid out on the XY plane, named, described
and sorted by planarity.

69

Because of its length, the script will be located after the explanation text.

The script starts with the dimensioning of a lot of variables which we will discuss as we stumble upon
them. First the script asks for the user input. The user is asked to select a mesh, to tell the desired
tolerance for the scale invariant planarity and to decide how many panels should be laid out in one
row (line 14-17). The next thing for us to do is to create a grid on which the panels will be laid out.
Through playing with these options I found that it is a good way to find the longest edge of the mesh
and set the grid spacing to be 1.2 times that value. The text height for the main text or the face name
is set to 1/10 of the length of the longest mesh edge and the other text to 1/40 of the same value (line
19-23). You can change these values to increase/decrease text sizes or to increase/decrease the grid
spacing. The longest mesh edge is found using the ExtremeEdges function (line 215-257) which was
introduced in chapter 3.3.1 – Edge Length Analysis.

The next thing we need is a big surface on the ground on which we can project all of our planar
panels. The surface’s length in X direction will be the number of elements in a row times the grid
spacing plus one length of the grid spacing so there is some extra space (line 31). For the surface’s
length in Y direction we first need to calculate the number of elements in a column by dividing the
number of mesh faces with the number of faces in one row. The result is then multiplied with the grid
spacing and one grid spacing length is added for more comfort (line 32). Now that we have the length
and the width of the surface we go on to create it and move it into place (line 33-35). We are ready
now to start looping through our faces (line 44-198). We first get a face from the mesh by its index.
Then the script extracts the face’s normal and reverses it (if everything turns out upside down
comment this step out). We copy the face by extracting its face points and creating a new surface
through those points (line 41-45). We find out the value of the face planarity scale invariant function
(line 48) and compare it to the user specified tolerance (line 49-52). We will need the face’s
approximate midpoint and orientation to place the face’s name in the middle. A new plane is created
for this purpose on line 59. The plane provides us with an origin which is close to the face’s midpoint
and with a normal vector for orientation. On line 58 we created the plane which is used to transform
the face from its position in the mesh to its position in the layout grid (line 58). There is no way known
to man to fit a plane exactly through four points if they are not coplanar. You can’t always get what
you want, Jagger might say. The best way to create this plane for a quadrilateral face is to try and fit a
plane through the face’s points as close as possible. This method will never give you a plane which fits
100% through the face points, unless the face is planar, but this is the best we can get in this universe.
Note that if you plan to build your design, you have to count on these deviations and adjust the script
you work with according to your needs in terms of form, manufacturing process and materials used. If
you are not careful enough your panels might not fit together in the end on the building. After we
created our plane we need to check whether it is oriented properly. We do this by measuring the
angle between the plane’s normal and the face’s normal. It should not be larger than a few degrees if
they are both oriented in the same direction. If the angle is larger than 10 degrees the new face should
definitely be flipped (line 61-65). We now add the text to our face while it is still in its original position
in the mesh (line 69-70). For the text on the face edges we need to find the insertion point or edge
midpoint (line 83) and the names of the neighboring faces (line 78). In each edge’s midpoint we need
first to create a base plane (line 85) on which we will create our text (line 86). Now the copy of the face
with all the text objects that we created previously needs to be moved from its original position in the

70

mesh to a new position in the grid and all those objects have to be aligned with the World XY plane.
We will first transform all objects to the world origin and then move it into position. For the
transformation we need a transformation matrix (line 91). The matrix basically stores all the
information that the computer needs to know in order to align the x, y and z coordinates of one plane
to the x, y and z coordinates of another plane. The function first takes the target plane as input and
then the plane in space. Now all objects are moved and aligned to the world origin one by one (line
92-100). We need to loop through the edge text objects and to move them into position one by one
too (line 102-106).

Now that we transformed the faces and the text objects on them from the mesh to the world origin
we can say that the hardest part of this script is behind us. What’s left is to add a frame with some
descriptions around the face and to move all together to the right position in the grid (and eventually
to project the planar faces onto the ground surface that we created on line 33. First let’s create the
frame. The frame is going to be a polyline so we need four corner points to create it. Actually, it needs
five corner points to create a closed polyline but the first and last point is the same (line 111-118).
Now we will add some description text to the lower left corner of the frame. I’ve created four lines of
text here (line 120-132). The right spacing of the text and positioning of the same is a matter of trial
and error (or precise calculation, whichever you like best).

The next thing on our checklist is to move the face, the frame and all descriptions to the right position
in our layout grid. Each time when the current index “i” divided by the number of rows gives no
remainder and the index is not zero the Y value is set to Y – dblGridSpacing and X is reset to zero. This
means that the current position in the grid is reset to first position on the x axis but it is shifted on row
down on the y axis. Now for every face the X value is increased by dblGridSpacing which means that
we move to the next position in relation to the place where we laid down the last plane. Using the
newly calculated X and Y value we create a translation array from the world origin to that point
(line137-143). We use that translation array to move all our objects one by one to their right position
(line 146-153). The only thing that’s left to do is to sort the panels according to their planarity into
layers. If the panel is planar as decided on line 51 we proceed to check if there is already a layer for
planar panels. If there is no such layer we create it (line 159-162). We go on to project the planar face
onto the ground surface and delete the original surface (line 165-169). Next thing to do is to move all
elements belonging to that face (projected lines, frame, descriptions…) onto the Planar Faces layer
(line 172-179).

If the current panel cannot be regarded as planar then we create the Curved Faces layer if there isn’t
one already in the scene (line 183-186). Just as before, all elements belonging to the current face are
moved onto that layer (line 189-201). The last step is to delete the ground surface which we used to
project the planar faces onto (line 203).

Note: If the text on the mesh faces is upside down after the script completes it means that the mesh is
not properly aligned and that the result is not correct. If this happens you can try to weld the mesh
and run the script again. If it is still not fixed, go to the line 43 and enable the vector reversion which
has been commented out. Please always check if the text on the mesh and on the extracted faces is
properly aligned.

71

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call PanelLayout ()
6 ' This script will lay out the mesh panels for production and label them according
7 ' to their position in the structure. This script works with triangular and

quadrilateral meshes.
8 Sub PanelLayout ()
9 Dim et, objMesh, intNoOfFaces , dblTolerance , dblMainTextHeight ,

dblOtherTextHeight
10 Dim intRow, dblLongestEdge , dblGridSpacing , arrTheSurface , i, j, k, currentFace
11 Dim arrTextOnEdge (), GroundText (), X, Y, arrRectPoints (),ShortestEdge, LongestEdge
12 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
13 ' Get inputs
14 objMesh = Rhino.GetObject("Select mesh", 32)
15 intNoOfFaces = et.EmNumberOfFaces (objMesh)
16 dblTolerance = Rhino.GetReal("Planarity tolerance: ", 0.015)
17 intRow = Rhino.GetInteger ("How many panels in a row?", 25)
18
19 '' Decide on the grid spacing and font size
20 dblLongestEdge = ExtremeEdges (objMesh, ShortestEdge, LongestEdge)
21 dblGridSpacing = 1.2*dblLongestEdge
22 dblMainTextHeight = dblLongestEdge /10
23 dblOtherTextHeight = dblLongestEdge /40
24
25 X=0
26 Y=-dblGridSpacing
27
28 Rhino.EnableRedraw (False)
29
30 '' Create the projection surface for the planar panels
31 Dim TheSurfaceX : TheSurfaceX = dblGridSpacing *intRow+dblGridSpacing
32 Dim TheSurfaceY : TheSurfaceY = intNoOfFaces /intRow*dblGridSpacing +

dblGridSpacing
33 arrTheSurface = Rhino.AddPlaneSurface (Rhino.WorldXYPlane ,

TheSurfaceX , TheSurfaceY)
34 Dim arrTranslationVector : arrTranslationVector = Array(0, -

TheSurfaceY , 0)
35 arrTheSurface = Rhino.MoveObject (arrTheSurface , arrTranslationVector)
36
37 ' Add name tag and plane to every face
38 ' Copy the face with the info to xy plane
39 For i=0 To intNoOfFaces -1
40 '' Current Face
41 currentFace = et.EmFace(objMesh, i)
42 Dim Normal : Normal = et.EmNormal(currentFace)
43 ‘Normal = Rhino.VectorReverse (Normal)
44 Dim Points : Points = et.EmGetFacePoints (currentFace)
45 Dim FaceCopy : FaceCopy = Rhino.AddSrfPt (Points)
46
47 '' Face's planarity
48 Dim dblPlanarity : dblPlanarity = et.FacePlanarityScaleInvariant (

currentFace)
49 Dim blnPlanar : blnPlanar = False
50 If dblPlanarity <= dblTolerance Then
51 blnPlanar = True
52 End If
53
54 '' Find aproximate face midpoint

72

55
56
57
58

Points)
59

60
61
62

3))
63

Dim arrFaceMidpoint : arrFaceMidpoint = MeanVector (Points)

'' Create a plane through the face points
Dim arrFacePlane : arrFacePlane = Rhino.PlaneFitFromPoints (

Dim arrFacePlaneText : arrFacePlaneText =

Rhino.PlaneFromNormal(MeanVector(Points), Normal)
'' If the plane is upside down
If Rhino.VectorAngle (arrFacePlane (3), Normal) > 10 Then

Dim newNormal : newNormal = Rhino.VectorReverse (arrFacePlane (

Dim newFacePlane : newFacePlane = Rhino.PlaneFromNormal (

arrFacePlane (0), newNormal)
64 arrFacePlane = newFacePlane
65 End If
66
67 '' Add text to the faces
68 Dim Text : Text = CStr(currentFace (1))
69 Dim TextFaces : TextFaces = Rhino.AddText (Text, arrFacePlaneText

,dblMainTextHeight)
70
71
72 '' Add text to the edges
73 ReDim arrTextOnEdge (-1)
74 Dim arrHalfedges : arrHalfedges = et.EmGetFaceHalfedges (

currentFace)
75 For j=0 To Ubound(arrHalfedges)
76 ReDim Preserve arrTextOnEdge (Ubound(arrTextOnEdge)+1)
77 Dim Halfedge : Halfedge = arrHalfedges (j)
78 Dim arrOppositeFace : arrOppositeFace = Et.EmFace(et.

EmOppositeHalfedge (Halfedge))
79 Dim arrEdgeText : arrEdgeText = CStr(arrOppositeFace (1))
80 Dim Point1 : Point1 = et.EmPoint(et.EmStartVertex (Halfedge))
81 Dim Point2 : Point2 = et.EmPoint(et.EmEndVertex (Halfedge))
82 Dim LineEdge : LineEdge = Rhino.AddLine(Point1, Point2)
83 Dim MidpointEdge : MidpointEdge = Rhino.DivideCurve (LineEdge,

2)
84 Call Rhino.DeleteObject (LineEdge)
85 Dim arrEdgePlane : arrEdgePlane = Rhino.PlaneFromNormal (

MidpointEdge (1), Normal)
86 arrTextOnEdge (Ubound(arrTextOnEdge)) = Rhino.AddText(

 arrEdgeText , arrEdgePlane , dblOtherTextHeight)
87 Next
88
89
90 '' Transform to xy plane
91 Dim arrMatrix : arrMatrix = Rhino.XformChangeBasis (Rhino.

WorldXYPlane , arrFacePlane)
92 Dim FaceOnGround : FaceOnGround = Rhino.TransformObject (FaceCopy,

arrMatrix)
93 Dim MainTextOnGround : MainTextOnGround = Rhino.TransformObject (

TextFaces, arrMatrix, True)
94 ReDim GroundText (Ubound(arrTextOnEdge))
95
96 '' Move the face and the text to the world origin
97 Dim FaceOnGroundPoints : FaceOnGroundPoints = Rhino.

SurfacePoints (FaceOnGround)
98 Dim FaceOnGroundMidpoint : FaceOnGroundMidpoint = MeanVector (

FaceOnGroundPoints)
99 FaceOnGround = Rhino.MoveObject (FaceOnGround ,

FaceOnGroundMidpoint , Array(0,0,0))

73

100

101
102
103

104

105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127

128
129

130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

MainTextOnGround = Rhino.MoveObject (MainTextOnGround ,
FaceOnGroundMidpoint , Array(0,0,0))

For k=0 To Ubound(arrTextOnEdge)

Dim EdgeTextOnGround : EdgeTextOnGround = Rhino.
TransformObject (arrTextOnEdge (k), arrMatrix)

EdgeTextOnGround = Rhino.MoveObject (EdgeTextOnGround ,
FaceOnGroundMidpoint , Array(0,0,0))

GroundText (k) = EdgeTextOnGround
Next

' Add descriptions
'' The frame rectangle
Dim arrRectangle , curvature, dblUnit, Text1, Text2, Text3, Text4,
arrSrfArea
ReDim arrRectPoints (4)
dblUnit = dblGridSpacing /2*0.95
arrRectPoints (0) = Array(dblUnit,dblUnit,0)
arrRectPoints (1) = Array(-dblUnit,dblUnit,0)
arrRectPoints (2) = Array(-dblUnit,-dblUnit,0)
arrRectPoints (3) = Array(dblUnit,-dblUnit,0)
arrRectPoints (4) = Array(dblUnit,dblUnit,0)
arrRectangle = Rhino.AddPolyline (arrRectPoints)

'' Create the description text
Text1 = Rhino.AddText(("Scale invariant planarity: " & CStr(

dblPlanarity)), Array(-dblUnit+0.2,-dblUnit+0.2,0), dblOtherTextHeight) If
blnPlanar = True Then

Text2 = "Planar face"
Else

Text2 = "Curved face"
End If
Text2 = Rhino.AddText(Text2, Array(-dblUnit+0.2,-dblUnit+0.2+1.3*

dblOtherTextHeight ,0), dblOtherTextHeight
) Text3 = et.FacePlanarity (currentFace)
Text3 = Rhino.AddText(("Planarity: " & CStr(Text3)), Array(-

dblUnit+0.2,-dblUnit+0.2-1.3*dblOtherTextHeight ,0), dblOtherTextHeight)
arrSrfArea = Rhino.SurfaceArea (FaceOnGround)
Text4 = arrSrfArea (0)
Text4 = Rhino.AddText(("Panel area: " & Text4), Array(-dblUnit+0.

 2,-dblUnit+0.2-2.6*dblOtherTextHeight ,0), dblOtherTextHeight)

' Move objects to specified location
'' Layout
Dim translation
If i Mod intRow = 0 And i><0 Then

Y = Y-dblGridSpacing
X = 0

End If
X = X+dblGridSpacing
translation = Array(X,Y,0)

'' Translation
Rhino.MoveObject FaceOnGround , translation
Rhino.MoveObject MainTextOnGround , translation
Rhino.MoveObjects GroundText , translation
Rhino.MoveObject arrRectangle , translation
Rhino.MoveObject Text1, translation
Rhino.MoveObject Text2, translation

74

152
153
154
155
156
157
158

159
160
161
162
163
164
165

already

Rhino.MoveObject Text3, translation
Rhino.MoveObject Text4, translation

' Sort objects into layers
If blnPlanar = True Then

'' Create layer for the planar panels if there isn't one

If Not Rhino.IsLayer("Planar Faces") Then

Rhino.AddLayer("Planar Faces") Rhino.LayerColor
"Planar Faces", RGB(0,0,255)

End If

'' Project edges of the planar panels to the surface
Dim arrFaceEdges : arrFaceEdges = Rhino.DuplicateEdgeCurves (

166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

FaceOnGround)
Rhino.DeleteObject (FaceOnGround)
arrFaceEdges = Rhino.JoinCurves (arrFaceEdges , True)
Dim arrProjectedEdges : arrProjectedEdges = Rhino.

ProjectCurveToSurface (arrFaceEdges , arrTheSurface , Array(0,0,1))
Rhino.DeleteObjects arrFaceEdges

'' Move objects to their layer
Rhino.ObjectLayer arrProjectedEdges , "Planar Faces"
Rhino.ObjectLayer MainTextOnGround , "Planar Faces"
Rhino.ObjectLayer GroundText , "Planar Faces"
Rhino.ObjectLayer Text1, "Planar Faces"
Rhino.ObjectLayer Text2, "Planar Faces"
Rhino.ObjectLayer Text3, "Planar Faces"
Rhino.ObjectLayer Text4, "Planar Faces"
Rhino.ObjectLayer arrRectangle , "Planar Faces"

Else

'' Create layer for the planar panels if there isn't one
already

If Not Rhino.IsLayer("Curved Faces") Then
Rhino.AddLayer("Curved Faces") Rhino.LayerColor
"Curved Faces", RGB(255,0,0)

End If

'' Move objects to their layer Rhino.ObjectLayer
FaceOnGround , "Curved Faces" Rhino.ObjectLayer
MainTextOnGround , "Curved Faces" Rhino.ObjectLayer
GroundText , "Curved Faces" Rhino.ObjectLayer Text1,
"Curved Faces" Rhino.ObjectLayer Text2, "Curved
Faces" Rhino.ObjectLayer Text3, "Curved Faces"
Rhino.ObjectLayer Text4, "Curved Faces"
Rhino.ObjectLayer arrRectangle , "Curved Faces"

End If
Next

Rhino.EnableRedraw (True)

' Delete the projection surface
Rhino.DeleteObject arrTheSurface

204 End Sub
205
206 Function MeanVector (ByVal arrPoints)
207 Dim m : m = Array(0,0,0)

75

208
209
210
211
212

Dim p
For Each p In arrPoints

m = Rhino.VectorAdd(m,p)
Next
MeanVector = Rhino.VectorScale (m,1/(UBound(arrPoints)+1))

213 End Function
214
215 Function ExtremeEdges (ByVal TheMesh, ByRef ShortestEdge, ByRef LongestEdge)
.
.
.
218 End Function

76

5.2.3 FaceRotation
This is the last example in this Primer. You might remember it from earlier. It was also the first script
that we executed. We have come a long way since then. I hope it wasn’t too hard and that you have
learned a lot.

Now that you have come so far you might take it as an insult if I tried to explain this easy little piece of
code to you. That’s why I won’t do it. Your final exercise is to analyze it by yourself and maybe even
improve it?! Good luck!

1 Option Explicit
2 'Script written by Marko Tomicic
3 'Script copyrighted by Evolute GmbH
4
5 Call FaceOpeningRotation ()
6 ' This script rotates the faces of a mesh by a specified rotation angle
7 Sub FaceOpeningRotation ()
8
9 On Error Resume Next
10
11 Dim et, arrHalfedge , i, arrVertex, axis, midpoint, point, dblAngle,

objMesh, nFaces
12 Set et = Rhino.GetPlugInObject ("EvoluteTools for Rhino")
13
14 ' Get user input
15 objMesh = Rhino.GetObject("Select Mesh", 32)
16 If IsNull(objMesh) Then Exit Sub
17 et.EmGarbageCollection (objMesh)
18 dblAngle = Rhino.GetReal("Opening Angle", 30)
19
20 ' Find number of mesh faces
21 nFaces = et.EmNumberOfFaces (objMesh)
22
23 Call Rhino.EnableRedraw (False)
24
25 For i=0 To nFaces - 1
26
27 ' Get the face, find face points
28 Dim arrface : arrface = et.EmFace(objMesh, et.EmFace(i))
29 Dim arrPointsAxis : arrPointsAxis = et.EmGetFacePoints (arrFace)
30
31 ' Create rotation axis
32 axis = Rhino.AddLine(arrPointsAxis (0), arrPointsAxis (2))
33 midpoint = Rhino.DivideCurve (axis, 2, True)
34
35 ' Create new face

77

36 Dim arrFacePoints : arrFacePoints = et.EmGetFacePoints (arrFace)
37 Dim arrNewFace : arrNewFace = Rhino.AddSrfPt(arrFacePoints)
38
39 ' Rotate face
40 Dim arrVectorAxis : arrVectorAxis = Rhino.VectorCreate (arrPointsAxis (

0), arrPointsAxis (2))
41 Dim arrNewFace2 : arrNewFace2 = Rhino.RotateObject (arrNewFace ,

midpoint(1), 30, arrVectorAxis)
42
43 Next
44 Call Rhino.EnableRedraw (True)
45
46 End Sub

Acknowledgements
The development of EvoluteTools was partially supported by the European Community’s 7th Framework
“People” Program through an IAPP project under grant agreement 230520 (ARC).

Thanks for reading and enjoy using EvoluteTools !
Revision 1.0
19th of November 2012
All content © Evolute GmbH or other parties and may not be reproduced in any form without written permission

	1. Warm Up
	1.1 About EvoluteTools for Rhino
	1.2 Overview
	1.3 Before we start…
	1.4 Getting started
	1.4.1 Installation
	1.4.2 Monkey

	1.5 Run your first script

	2. The Halfedge Data Structure
	2.1 Rhino’s mesh storage
	/2.2 Halfedges
	2.3 Interconnections
	2.4 Navigating the Halfedge Data Structure
	2.5 Accessing the Halfedge Data Structure with EvoluteTools
	2.5.1 EvoluteTools Handles
	2.5.2 EvoluteTools Functions

	2.6 Examples
	2.6.1 Delete Edge’s Faces
	2.6.2 Get Face’s Vertices
	2.6.3 Vertex Faces
	2.6.4 Select Polyline
	2.6.5 Vertex Ring
	2.6.6 Vertex nRing

	3. Mesh Editing
	3.1 About this chapter
	3.2 Divide et Impera
	3.3 Examples
	3.3.1 Edge Length Analysis
	3.3.2 Edge Length Subdivision
	3.3.3 Max Edge Length Loop Cutting
	3.3.4 Min Edge Length Delete Polylines
	3.3.5 Triangles to quads

	4. Mesh Optimization
	4.1 Optimization
	4.2 Optimization options
	4.3 Constraints
	4.4 Examples
	4.4.1 Face Attractor
	4.4.2 Closest Polyline Vertices Function
	4.4.3 Snap Mesh to Curves
	4.4.4 Closest Non Polyline Vertices function
	4.4.5 Is Mesh Diagonalized function
	4.4.6 Snap Vertices to Planes
	4.4.7 Tower from Coplanarity Constraints

	5. Post Processing
	5.1 About this chapter
	5.2 Examples
	5.2.1 Pipe Substructure
	5.2.2 The Ultimate Panel Layout for Production Script
	5.2.3 FaceRotation

	00_Introduction.pdf
	Introduction

